Spaces:
Paused
Paused
Commit
·
084ab49
1
Parent(s):
05d21c5
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,106 +1,106 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import torch
|
| 3 |
-
import transformers
|
| 4 |
-
from transformers import pipeline
|
| 5 |
-
from transformers import LlamaTokenizer, LlamaForCausalLM
|
| 6 |
-
import time
|
| 7 |
-
import csv
|
| 8 |
-
import locale
|
| 9 |
-
locale.getpreferredencoding = lambda: "UTF-8"
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
-
-
|
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
-
#https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf
|
| 20 |
-
#https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
|
| 21 |
-
#https://huggingface.co/minlik/chinese-alpaca-plus-7b-merged
|
| 22 |
|
| 23 |
-
def generate_prompt(text):
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf')
|
| 31 |
-
pipeline = pipeline(
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
)
|
| 37 |
|
| 38 |
-
st.title("Chinese text generation alpaca2")
|
| 39 |
-
st.write("Enter a sentence and alpaca2 will answer:")
|
| 40 |
|
| 41 |
-
user_input = st.text_input("")
|
| 42 |
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
-
with open('alpaca_output.csv', 'a', newline='',encoding = "utf-8") as csvfile:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
| 1 |
+
# import streamlit as st
|
| 2 |
+
# import torch
|
| 3 |
+
# import transformers
|
| 4 |
+
# from transformers import pipeline
|
| 5 |
+
# from transformers import LlamaTokenizer, LlamaForCausalLM
|
| 6 |
+
# import time
|
| 7 |
+
# import csv
|
| 8 |
+
# import locale
|
| 9 |
+
# locale.getpreferredencoding = lambda: "UTF-8"
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
+
# -
|
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
+
# #https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf
|
| 20 |
+
# #https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
|
| 21 |
+
# #https://huggingface.co/minlik/chinese-alpaca-plus-7b-merged
|
| 22 |
|
| 23 |
+
# def generate_prompt(text):
|
| 24 |
+
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
| 25 |
+
# ### Instruction:
|
| 26 |
+
# {text}
|
| 27 |
|
| 28 |
+
# ### Response:"""
|
| 29 |
|
| 30 |
+
# tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf')
|
| 31 |
+
# pipeline = pipeline(
|
| 32 |
+
# "text-generation",
|
| 33 |
+
# model="shibing624/chinese-alpaca-plus-7b-hf",
|
| 34 |
+
# torch_dtype=torch.float32,
|
| 35 |
+
# device_map="auto",
|
| 36 |
+
# )
|
| 37 |
|
| 38 |
+
# st.title("Chinese text generation alpaca2")
|
| 39 |
+
# st.write("Enter a sentence and alpaca2 will answer:")
|
| 40 |
|
| 41 |
+
# user_input = st.text_input("")
|
| 42 |
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
+
# with open('alpaca_output.csv', 'a', newline='',encoding = "utf-8") as csvfile:
|
| 47 |
+
# writer = csv.writer(csvfile)
|
| 48 |
+
# # writer.writerow(["stockname",'prompt','answer','time'])
|
| 49 |
+
# if user_input:
|
| 50 |
+
# if user_input[0] == ".":
|
| 51 |
+
# stockname = user_input[1:4]
|
| 52 |
+
# analysis = user_input[4:]
|
| 53 |
|
| 54 |
+
# text = f"""請以肯定和專業的語氣,一步一步的思考並回答以下關於{stockname}的問題,避免空洞的答覆:
|
| 55 |
+
# - 請回答關於{stockname}的問題,請總結給予的資料以及資料解釋,並整合出金融上的洞見。\n
|
| 56 |
+
# - 請不要生成任何資料沒有提供的數據,即便你已知道。\n
|
| 57 |
+
# - 請假裝這些資料都是你預先知道的知識。因此,請不要提到「根據資料」、「基於上述資料」等回答
|
| 58 |
+
# - 請不要說「好的、我明白了、根據我的要求、以下是我的答案」等贅詞,請輸出分析結果即可\n
|
| 59 |
+
# - 請寫300字到500字之間,若合適,可以進行分類、列點
|
| 60 |
+
# 資料:{stockname}{analysis}
|
| 61 |
|
| 62 |
+
# 請特別注意,分析結果包含籌碼面、基本面以及技術面,請針對這三個面向進行回答,並且特別注意個別符合幾項和不符合幾項。籌碼面、技術面和基本面滿分十分,總計滿分為30分。
|
| 63 |
+
# 三個面向中,符合5項以上代表該面項表現好,反之是該面項表現差。
|
| 64 |
+
# """
|
| 65 |
|
| 66 |
+
# prompt = generate_prompt(text)
|
| 67 |
+
# start = time.time()
|
| 68 |
+
# sequences = pipeline(
|
| 69 |
+
# prompt,
|
| 70 |
+
# do_sample=True,
|
| 71 |
+
# top_k=40,
|
| 72 |
+
# num_return_sequences=1,
|
| 73 |
+
# eos_token_id=tokenizer.eos_token_id,
|
| 74 |
+
# max_length=200,
|
| 75 |
+
# )
|
| 76 |
+
# end = time.time()
|
| 77 |
+
# for seq in sequences:
|
| 78 |
+
# st.write(f"Result: {seq}") #seq['generated_text']
|
| 79 |
+
# st.write(f"time: {(end-start):.2f}")
|
| 80 |
+
# writer.writerow([stockname,text,sequences,f"time: {(end-start):.2f}"])
|
| 81 |
|
| 82 |
+
# # input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
|
| 83 |
+
# # with torch.no_grad():
|
| 84 |
+
# # output_ids = model.generate(
|
| 85 |
+
# # input_ids=input_ids,
|
| 86 |
+
# # max_new_tokens=2048,
|
| 87 |
+
# # top_k=40,
|
| 88 |
|
| 89 |
+
# # ).cuda()
|
| 90 |
+
# # output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 91 |
+
# else:
|
| 92 |
+
# prompt = generate_prompt(user_input)
|
| 93 |
+
# start = time.time()
|
| 94 |
+
# sequences = pipeline(
|
| 95 |
+
# prompt,
|
| 96 |
+
# do_sample=True,
|
| 97 |
+
# top_k=40,
|
| 98 |
+
# num_return_sequences=1,
|
| 99 |
+
# eos_token_id=tokenizer.eos_token_id,
|
| 100 |
+
# max_length=200,
|
| 101 |
+
# )
|
| 102 |
+
# end = time.time()
|
| 103 |
+
# for seq in sequences:
|
| 104 |
+
# st.write(f"Result: {seq}") #seq['generated_text']
|
| 105 |
+
# st.write(f"time: {(end-start):.2f}")
|
| 106 |
+
# writer.writerow(["無",user_input,sequences,f"time: {(end-start):.2f}"])
|