Spaces:
Build error
Build error
Commit
·
5f141a5
1
Parent(s):
333a749
Create rebel.py
Browse files
rebel.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from transformers import pipeline
|
3 |
+
from pyvis.network import Network
|
4 |
+
from functools import lru_cache
|
5 |
+
import spacy
|
6 |
+
from spacy import displacy
|
7 |
+
|
8 |
+
|
9 |
+
DEFAULT_LABEL_COLORS = {
|
10 |
+
"ORG": "#7aecec",
|
11 |
+
"PRODUCT": "#bfeeb7",
|
12 |
+
"GPE": "#feca74",
|
13 |
+
"LOC": "#ff9561",
|
14 |
+
"PERSON": "#aa9cfc",
|
15 |
+
"NORP": "#c887fb",
|
16 |
+
"FACILITY": "#9cc9cc",
|
17 |
+
"EVENT": "#ffeb80",
|
18 |
+
"LAW": "#ff8197",
|
19 |
+
"LANGUAGE": "#ff8197",
|
20 |
+
"WORK_OF_ART": "#f0d0ff",
|
21 |
+
"DATE": "#bfe1d9",
|
22 |
+
"TIME": "#bfe1d9",
|
23 |
+
"MONEY": "#e4e7d2",
|
24 |
+
"QUANTITY": "#e4e7d2",
|
25 |
+
"ORDINAL": "#e4e7d2",
|
26 |
+
"CARDINAL": "#e4e7d2",
|
27 |
+
"PERCENT": "#e4e7d2",
|
28 |
+
}
|
29 |
+
|
30 |
+
def generate_knowledge_graph(texts: List[str], filename: str):
|
31 |
+
nlp = spacy.load("en_core_web_sm")
|
32 |
+
doc = nlp("\n".join(texts).lower())
|
33 |
+
NERs = [ent.text for ent in doc.ents]
|
34 |
+
NER_types = [ent.label_ for ent in doc.ents]
|
35 |
+
|
36 |
+
triplets = []
|
37 |
+
for triplet in texts:
|
38 |
+
triplets.extend(generate_partial_graph(triplet))
|
39 |
+
heads = [ t["head"].lower() for t in triplets]
|
40 |
+
tails = [ t["tail"].lower() for t in triplets]
|
41 |
+
|
42 |
+
nodes = list(set(heads + tails))
|
43 |
+
net = Network(directed=True, width="700px", height="700px")
|
44 |
+
|
45 |
+
for n in nodes:
|
46 |
+
if n in NERs:
|
47 |
+
NER_type = NER_types[NERs.index(n)]
|
48 |
+
if NER_type in NER_types:
|
49 |
+
if NER_type in DEFAULT_LABEL_COLORS.keys():
|
50 |
+
color = DEFAULT_LABEL_COLORS[NER_type]
|
51 |
+
else:
|
52 |
+
color = "#666666"
|
53 |
+
net.add_node(n, title=NER_type, shape="circle", color=color)
|
54 |
+
else:
|
55 |
+
net.add_node(n, shape="circle")
|
56 |
+
else:
|
57 |
+
net.add_node(n, shape="circle")
|
58 |
+
|
59 |
+
unique_triplets = set()
|
60 |
+
stringify_trip = lambda x : x["tail"] + x["head"] + x["type"].lower()
|
61 |
+
for triplet in triplets:
|
62 |
+
if stringify_trip(triplet) not in unique_triplets:
|
63 |
+
net.add_edge(triplet["head"].lower(), triplet["tail"].lower(),
|
64 |
+
title=triplet["type"], label=triplet["type"])
|
65 |
+
unique_triplets.add(stringify_trip(triplet))
|
66 |
+
|
67 |
+
net.repulsion(
|
68 |
+
node_distance=200,
|
69 |
+
central_gravity=0.2,
|
70 |
+
spring_length=200,
|
71 |
+
spring_strength=0.05,
|
72 |
+
damping=0.09
|
73 |
+
)
|
74 |
+
net.set_edge_smooth('dynamic')
|
75 |
+
net.show(filename)
|
76 |
+
return nodes
|
77 |
+
|
78 |
+
|
79 |
+
@lru_cache(maxsize=16)
|
80 |
+
def generate_partial_graph(text: str):
|
81 |
+
triplet_extractor = pipeline('text2text-generation', model='Babelscape/rebel-large', tokenizer='Babelscape/rebel-large')
|
82 |
+
a = triplet_extractor(text, return_tensors=True, return_text=False)[0]["generated_token_ids"]["output_ids"]
|
83 |
+
extracted_text = triplet_extractor.tokenizer.batch_decode(a)
|
84 |
+
extracted_triplets = extract_triplets(extracted_text[0])
|
85 |
+
return extracted_triplets
|
86 |
+
|
87 |
+
|
88 |
+
def extract_triplets(text):
|
89 |
+
"""
|
90 |
+
Function to parse the generated text and extract the triplets
|
91 |
+
"""
|
92 |
+
triplets = []
|
93 |
+
relation, subject, relation, object_ = '', '', '', ''
|
94 |
+
text = text.strip()
|
95 |
+
current = 'x'
|
96 |
+
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").split():
|
97 |
+
if token == "<triplet>":
|
98 |
+
current = 't'
|
99 |
+
if relation != '':
|
100 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
101 |
+
relation = ''
|
102 |
+
subject = ''
|
103 |
+
elif token == "<subj>":
|
104 |
+
current = 's'
|
105 |
+
if relation != '':
|
106 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
107 |
+
object_ = ''
|
108 |
+
elif token == "<obj>":
|
109 |
+
current = 'o'
|
110 |
+
relation = ''
|
111 |
+
else:
|
112 |
+
if current == 't':
|
113 |
+
subject += ' ' + token
|
114 |
+
elif current == 's':
|
115 |
+
object_ += ' ' + token
|
116 |
+
elif current == 'o':
|
117 |
+
relation += ' ' + token
|
118 |
+
if subject != '' and relation != '' and object_ != '':
|
119 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
120 |
+
|
121 |
+
return triplets
|
122 |
+
|