Spaces:
Build error
Build error
Commit
·
5f141a5
1
Parent(s):
333a749
Create rebel.py
Browse files
rebel.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from pyvis.network import Network
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
import spacy
|
| 6 |
+
from spacy import displacy
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
DEFAULT_LABEL_COLORS = {
|
| 10 |
+
"ORG": "#7aecec",
|
| 11 |
+
"PRODUCT": "#bfeeb7",
|
| 12 |
+
"GPE": "#feca74",
|
| 13 |
+
"LOC": "#ff9561",
|
| 14 |
+
"PERSON": "#aa9cfc",
|
| 15 |
+
"NORP": "#c887fb",
|
| 16 |
+
"FACILITY": "#9cc9cc",
|
| 17 |
+
"EVENT": "#ffeb80",
|
| 18 |
+
"LAW": "#ff8197",
|
| 19 |
+
"LANGUAGE": "#ff8197",
|
| 20 |
+
"WORK_OF_ART": "#f0d0ff",
|
| 21 |
+
"DATE": "#bfe1d9",
|
| 22 |
+
"TIME": "#bfe1d9",
|
| 23 |
+
"MONEY": "#e4e7d2",
|
| 24 |
+
"QUANTITY": "#e4e7d2",
|
| 25 |
+
"ORDINAL": "#e4e7d2",
|
| 26 |
+
"CARDINAL": "#e4e7d2",
|
| 27 |
+
"PERCENT": "#e4e7d2",
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
def generate_knowledge_graph(texts: List[str], filename: str):
|
| 31 |
+
nlp = spacy.load("en_core_web_sm")
|
| 32 |
+
doc = nlp("\n".join(texts).lower())
|
| 33 |
+
NERs = [ent.text for ent in doc.ents]
|
| 34 |
+
NER_types = [ent.label_ for ent in doc.ents]
|
| 35 |
+
|
| 36 |
+
triplets = []
|
| 37 |
+
for triplet in texts:
|
| 38 |
+
triplets.extend(generate_partial_graph(triplet))
|
| 39 |
+
heads = [ t["head"].lower() for t in triplets]
|
| 40 |
+
tails = [ t["tail"].lower() for t in triplets]
|
| 41 |
+
|
| 42 |
+
nodes = list(set(heads + tails))
|
| 43 |
+
net = Network(directed=True, width="700px", height="700px")
|
| 44 |
+
|
| 45 |
+
for n in nodes:
|
| 46 |
+
if n in NERs:
|
| 47 |
+
NER_type = NER_types[NERs.index(n)]
|
| 48 |
+
if NER_type in NER_types:
|
| 49 |
+
if NER_type in DEFAULT_LABEL_COLORS.keys():
|
| 50 |
+
color = DEFAULT_LABEL_COLORS[NER_type]
|
| 51 |
+
else:
|
| 52 |
+
color = "#666666"
|
| 53 |
+
net.add_node(n, title=NER_type, shape="circle", color=color)
|
| 54 |
+
else:
|
| 55 |
+
net.add_node(n, shape="circle")
|
| 56 |
+
else:
|
| 57 |
+
net.add_node(n, shape="circle")
|
| 58 |
+
|
| 59 |
+
unique_triplets = set()
|
| 60 |
+
stringify_trip = lambda x : x["tail"] + x["head"] + x["type"].lower()
|
| 61 |
+
for triplet in triplets:
|
| 62 |
+
if stringify_trip(triplet) not in unique_triplets:
|
| 63 |
+
net.add_edge(triplet["head"].lower(), triplet["tail"].lower(),
|
| 64 |
+
title=triplet["type"], label=triplet["type"])
|
| 65 |
+
unique_triplets.add(stringify_trip(triplet))
|
| 66 |
+
|
| 67 |
+
net.repulsion(
|
| 68 |
+
node_distance=200,
|
| 69 |
+
central_gravity=0.2,
|
| 70 |
+
spring_length=200,
|
| 71 |
+
spring_strength=0.05,
|
| 72 |
+
damping=0.09
|
| 73 |
+
)
|
| 74 |
+
net.set_edge_smooth('dynamic')
|
| 75 |
+
net.show(filename)
|
| 76 |
+
return nodes
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@lru_cache(maxsize=16)
|
| 80 |
+
def generate_partial_graph(text: str):
|
| 81 |
+
triplet_extractor = pipeline('text2text-generation', model='Babelscape/rebel-large', tokenizer='Babelscape/rebel-large')
|
| 82 |
+
a = triplet_extractor(text, return_tensors=True, return_text=False)[0]["generated_token_ids"]["output_ids"]
|
| 83 |
+
extracted_text = triplet_extractor.tokenizer.batch_decode(a)
|
| 84 |
+
extracted_triplets = extract_triplets(extracted_text[0])
|
| 85 |
+
return extracted_triplets
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def extract_triplets(text):
|
| 89 |
+
"""
|
| 90 |
+
Function to parse the generated text and extract the triplets
|
| 91 |
+
"""
|
| 92 |
+
triplets = []
|
| 93 |
+
relation, subject, relation, object_ = '', '', '', ''
|
| 94 |
+
text = text.strip()
|
| 95 |
+
current = 'x'
|
| 96 |
+
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").split():
|
| 97 |
+
if token == "<triplet>":
|
| 98 |
+
current = 't'
|
| 99 |
+
if relation != '':
|
| 100 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
| 101 |
+
relation = ''
|
| 102 |
+
subject = ''
|
| 103 |
+
elif token == "<subj>":
|
| 104 |
+
current = 's'
|
| 105 |
+
if relation != '':
|
| 106 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
| 107 |
+
object_ = ''
|
| 108 |
+
elif token == "<obj>":
|
| 109 |
+
current = 'o'
|
| 110 |
+
relation = ''
|
| 111 |
+
else:
|
| 112 |
+
if current == 't':
|
| 113 |
+
subject += ' ' + token
|
| 114 |
+
elif current == 's':
|
| 115 |
+
object_ += ' ' + token
|
| 116 |
+
elif current == 'o':
|
| 117 |
+
relation += ' ' + token
|
| 118 |
+
if subject != '' and relation != '' and object_ != '':
|
| 119 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
| 120 |
+
|
| 121 |
+
return triplets
|
| 122 |
+
|