multimodalart HF Staff commited on
Commit
02dee9c
·
verified ·
1 Parent(s): 103e1ce
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -10,11 +10,11 @@ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
- pipe = SanaSprintPipeline.from_pretrained(
14
- "Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
15
- torch_dtype=torch.bfloat16
16
- )
17
- pipe.to(device)
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 2048
20
 
@@ -54,7 +54,10 @@ css="""
54
  with gr.Blocks(css=css) as demo:
55
 
56
  with gr.Column(elem_id="col-container"):
57
- gr.Markdown(f"""# Sana Sprint""")
 
 
 
58
 
59
  with gr.Row():
60
 
@@ -107,7 +110,7 @@ with gr.Blocks(css=css) as demo:
107
  minimum=1,
108
  maximum=15,
109
  step=0.1,
110
- value=1,
111
  )
112
 
113
  num_inference_steps = gr.Slider(
 
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
16
+ torch.cuda.empty_cache()
17
+
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 2048
20
 
 
54
  with gr.Blocks(css=css) as demo:
55
 
56
  with gr.Column(elem_id="col-container"):
57
+ gr.Markdown(f"""# FLUX.1 [dev]
58
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
+ """)
61
 
62
  with gr.Row():
63
 
 
110
  minimum=1,
111
  maximum=15,
112
  step=0.1,
113
+ value=3.5,
114
  )
115
 
116
  num_inference_steps = gr.Slider(