File size: 4,260 Bytes
8ccf632
 
 
 
1321eb2
 
 
06f0278
1321eb2
06f0278
8ccf632
 
1321eb2
 
 
 
 
 
 
 
 
76d8871
bc0adb1
8ccf632
06f0278
8ccf632
1321eb2
76d8871
 
1321eb2
 
 
 
 
54192f0
 
8ccf632
1321eb2
 
76d8871
 
 
 
 
 
 
 
 
 
1321eb2
 
 
8ccf632
06f0278
 
 
8ccf632
 
1321eb2
8ccf632
 
e2944a6
8ccf632
 
 
1321eb2
8ccf632
 
dc55004
26a7c6b
1321eb2
 
 
8ccf632
 
 
 
 
 
 
 
 
 
 
1321eb2
8ccf632
1321eb2
8ccf632
1321eb2
8ccf632
 
 
1321eb2
 
 
8ccf632
1321eb2
 
b213a9c
1321eb2
8ccf632
 
2b62414
1321eb2
 
 
8ccf632
 
1321eb2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images

# 檢查設備是否可用 GPU
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# 載入模型,若需要 API Token,請加上 use_auth_token=True
try:
    taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
    good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", 
                                             torch_dtype=dtype).to(device)
    pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
except Exception as e:
    print(f"模型載入錯誤: {e}")

torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# 確保 flux_pipe_call_that_returns_an_iterable_of_images 綁定到模型
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

# 定義推論函數
@gr.Interface.function(duration=75)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, 
          guidance_scale=3.5, num_inference_steps=28, 
          progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    # 逐步生成圖像
    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
        yield img, seed

# 預設的範例
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

# 建立 Gradio 介面
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] 
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] 
[[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)

            with gr.Row():
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
                num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)

        gr.Examples(examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy")

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

# 啟動 Gradio App
demo.launch(share=True)