Spaces:
Runtime error
Runtime error
Upload kontext_pipeline.py
Browse files- kontext_pipeline.py +1088 -0
kontext_pipeline.py
ADDED
|
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import (
|
| 7 |
+
CLIPImageProcessor,
|
| 8 |
+
CLIPTextModel,
|
| 9 |
+
CLIPTokenizer,
|
| 10 |
+
CLIPVisionModelWithProjection,
|
| 11 |
+
T5EncoderModel,
|
| 12 |
+
T5TokenizerFast,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 16 |
+
from diffusers.loaders import (
|
| 17 |
+
FluxIPAdapterMixin,
|
| 18 |
+
FluxLoraLoaderMixin,
|
| 19 |
+
FromSingleFileMixin,
|
| 20 |
+
TextualInversionLoaderMixin,
|
| 21 |
+
)
|
| 22 |
+
from diffusers.models import AutoencoderKL, FluxTransformer2DModel
|
| 23 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 24 |
+
from diffusers.utils import (
|
| 25 |
+
USE_PEFT_BACKEND,
|
| 26 |
+
is_torch_xla_available,
|
| 27 |
+
logging,
|
| 28 |
+
replace_example_docstring,
|
| 29 |
+
scale_lora_layers,
|
| 30 |
+
unscale_lora_layers,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 34 |
+
from diffusers import DiffusionPipeline
|
| 35 |
+
|
| 36 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if is_torch_xla_available():
|
| 41 |
+
import torch_xla.core.xla_model as xm
|
| 42 |
+
|
| 43 |
+
XLA_AVAILABLE = True
|
| 44 |
+
else:
|
| 45 |
+
XLA_AVAILABLE = False
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 49 |
+
|
| 50 |
+
EXAMPLE_DOC_STRING = """
|
| 51 |
+
Examples:
|
| 52 |
+
```py
|
| 53 |
+
# TODO
|
| 54 |
+
```
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
PREFERRED_KONTEXT_RESOLUTIONS = [
|
| 59 |
+
(672, 1568),
|
| 60 |
+
(688, 1504),
|
| 61 |
+
(720, 1456),
|
| 62 |
+
(752, 1392),
|
| 63 |
+
(800, 1328),
|
| 64 |
+
(832, 1248),
|
| 65 |
+
(880, 1184),
|
| 66 |
+
(944, 1104),
|
| 67 |
+
(1024, 1024),
|
| 68 |
+
(1104, 944),
|
| 69 |
+
(1184, 880),
|
| 70 |
+
(1248, 832),
|
| 71 |
+
(1328, 800),
|
| 72 |
+
(1392, 752),
|
| 73 |
+
(1456, 720),
|
| 74 |
+
(1504, 688),
|
| 75 |
+
(1568, 672),
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def calculate_shift(
|
| 80 |
+
image_seq_len,
|
| 81 |
+
base_seq_len: int = 256,
|
| 82 |
+
max_seq_len: int = 4096,
|
| 83 |
+
base_shift: float = 0.5,
|
| 84 |
+
max_shift: float = 1.15,
|
| 85 |
+
):
|
| 86 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 87 |
+
b = base_shift - m * base_seq_len
|
| 88 |
+
mu = image_seq_len * m + b
|
| 89 |
+
return mu
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 93 |
+
def retrieve_timesteps(
|
| 94 |
+
scheduler,
|
| 95 |
+
num_inference_steps: Optional[int] = None,
|
| 96 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 97 |
+
timesteps: Optional[List[int]] = None,
|
| 98 |
+
sigmas: Optional[List[float]] = None,
|
| 99 |
+
**kwargs,
|
| 100 |
+
):
|
| 101 |
+
r"""
|
| 102 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 103 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
scheduler (`SchedulerMixin`):
|
| 107 |
+
The scheduler to get timesteps from.
|
| 108 |
+
num_inference_steps (`int`):
|
| 109 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 110 |
+
must be `None`.
|
| 111 |
+
device (`str` or `torch.device`, *optional*):
|
| 112 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 113 |
+
timesteps (`List[int]`, *optional*):
|
| 114 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 115 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 116 |
+
sigmas (`List[float]`, *optional*):
|
| 117 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 118 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 122 |
+
second element is the number of inference steps.
|
| 123 |
+
"""
|
| 124 |
+
if timesteps is not None and sigmas is not None:
|
| 125 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 126 |
+
if timesteps is not None:
|
| 127 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 128 |
+
if not accepts_timesteps:
|
| 129 |
+
raise ValueError(
|
| 130 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 131 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 132 |
+
)
|
| 133 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 134 |
+
timesteps = scheduler.timesteps
|
| 135 |
+
num_inference_steps = len(timesteps)
|
| 136 |
+
elif sigmas is not None:
|
| 137 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 138 |
+
if not accept_sigmas:
|
| 139 |
+
raise ValueError(
|
| 140 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 141 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 142 |
+
)
|
| 143 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 144 |
+
timesteps = scheduler.timesteps
|
| 145 |
+
num_inference_steps = len(timesteps)
|
| 146 |
+
else:
|
| 147 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 148 |
+
timesteps = scheduler.timesteps
|
| 149 |
+
return timesteps, num_inference_steps
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
| 153 |
+
def retrieve_latents(
|
| 154 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
| 155 |
+
):
|
| 156 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
| 157 |
+
return encoder_output.latent_dist.sample(generator)
|
| 158 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
| 159 |
+
return encoder_output.latent_dist.mode()
|
| 160 |
+
elif hasattr(encoder_output, "latents"):
|
| 161 |
+
return encoder_output.latents
|
| 162 |
+
else:
|
| 163 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class FluxKontextPipeline(
|
| 167 |
+
DiffusionPipeline,
|
| 168 |
+
FluxLoraLoaderMixin,
|
| 169 |
+
FromSingleFileMixin,
|
| 170 |
+
TextualInversionLoaderMixin,
|
| 171 |
+
FluxIPAdapterMixin,
|
| 172 |
+
):
|
| 173 |
+
r"""
|
| 174 |
+
The Flux Kontext pipeline for text-to-image generation.
|
| 175 |
+
|
| 176 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
transformer ([`FluxTransformer2DModel`]):
|
| 180 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 181 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 182 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 183 |
+
vae ([`AutoencoderKL`]):
|
| 184 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 185 |
+
text_encoder ([`CLIPTextModel`]):
|
| 186 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 187 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 188 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
| 189 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
| 190 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 191 |
+
tokenizer (`CLIPTokenizer`):
|
| 192 |
+
Tokenizer of class
|
| 193 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 194 |
+
tokenizer_2 (`T5TokenizerFast`):
|
| 195 |
+
Second Tokenizer of class
|
| 196 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
| 197 |
+
"""
|
| 198 |
+
|
| 199 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
|
| 200 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
| 201 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
| 202 |
+
|
| 203 |
+
def __init__(
|
| 204 |
+
self,
|
| 205 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 206 |
+
vae: AutoencoderKL,
|
| 207 |
+
text_encoder: CLIPTextModel,
|
| 208 |
+
tokenizer: CLIPTokenizer,
|
| 209 |
+
text_encoder_2: T5EncoderModel,
|
| 210 |
+
tokenizer_2: T5TokenizerFast,
|
| 211 |
+
transformer: FluxTransformer2DModel,
|
| 212 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 213 |
+
feature_extractor: CLIPImageProcessor = None,
|
| 214 |
+
):
|
| 215 |
+
super().__init__()
|
| 216 |
+
|
| 217 |
+
self.register_modules(
|
| 218 |
+
vae=vae,
|
| 219 |
+
text_encoder=text_encoder,
|
| 220 |
+
text_encoder_2=text_encoder_2,
|
| 221 |
+
tokenizer=tokenizer,
|
| 222 |
+
tokenizer_2=tokenizer_2,
|
| 223 |
+
transformer=transformer,
|
| 224 |
+
scheduler=scheduler,
|
| 225 |
+
image_encoder=image_encoder,
|
| 226 |
+
feature_extractor=feature_extractor,
|
| 227 |
+
)
|
| 228 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
| 229 |
+
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
| 230 |
+
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
| 231 |
+
self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
|
| 232 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
| 233 |
+
self.tokenizer_max_length = (
|
| 234 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 235 |
+
)
|
| 236 |
+
self.default_sample_size = 128
|
| 237 |
+
|
| 238 |
+
def _get_t5_prompt_embeds(
|
| 239 |
+
self,
|
| 240 |
+
prompt: Union[str, List[str]] = None,
|
| 241 |
+
num_images_per_prompt: int = 1,
|
| 242 |
+
max_sequence_length: int = 512,
|
| 243 |
+
device: Optional[torch.device] = None,
|
| 244 |
+
dtype: Optional[torch.dtype] = None,
|
| 245 |
+
):
|
| 246 |
+
device = device or self._execution_device
|
| 247 |
+
dtype = dtype or self.text_encoder.dtype
|
| 248 |
+
|
| 249 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 250 |
+
batch_size = len(prompt)
|
| 251 |
+
|
| 252 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 253 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
|
| 254 |
+
|
| 255 |
+
text_inputs = self.tokenizer_2(
|
| 256 |
+
prompt,
|
| 257 |
+
padding="max_length",
|
| 258 |
+
max_length=max_sequence_length,
|
| 259 |
+
truncation=True,
|
| 260 |
+
return_length=False,
|
| 261 |
+
return_overflowing_tokens=False,
|
| 262 |
+
return_tensors="pt",
|
| 263 |
+
)
|
| 264 |
+
text_input_ids = text_inputs.input_ids
|
| 265 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
| 266 |
+
|
| 267 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 268 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 269 |
+
logger.warning(
|
| 270 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 271 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
| 275 |
+
|
| 276 |
+
dtype = self.text_encoder_2.dtype
|
| 277 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 278 |
+
|
| 279 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 280 |
+
|
| 281 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 282 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 283 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 284 |
+
|
| 285 |
+
return prompt_embeds
|
| 286 |
+
|
| 287 |
+
def _get_clip_prompt_embeds(
|
| 288 |
+
self,
|
| 289 |
+
prompt: Union[str, List[str]],
|
| 290 |
+
num_images_per_prompt: int = 1,
|
| 291 |
+
device: Optional[torch.device] = None,
|
| 292 |
+
):
|
| 293 |
+
device = device or self._execution_device
|
| 294 |
+
|
| 295 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 296 |
+
batch_size = len(prompt)
|
| 297 |
+
|
| 298 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 299 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
| 300 |
+
|
| 301 |
+
text_inputs = self.tokenizer(
|
| 302 |
+
prompt,
|
| 303 |
+
padding="max_length",
|
| 304 |
+
max_length=self.tokenizer_max_length,
|
| 305 |
+
truncation=True,
|
| 306 |
+
return_overflowing_tokens=False,
|
| 307 |
+
return_length=False,
|
| 308 |
+
return_tensors="pt",
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
text_input_ids = text_inputs.input_ids
|
| 312 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 313 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 314 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 315 |
+
logger.warning(
|
| 316 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 317 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 318 |
+
)
|
| 319 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
| 320 |
+
|
| 321 |
+
# Use pooled output of CLIPTextModel
|
| 322 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 323 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 324 |
+
|
| 325 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 326 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
| 327 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 328 |
+
|
| 329 |
+
return prompt_embeds
|
| 330 |
+
|
| 331 |
+
def encode_prompt(
|
| 332 |
+
self,
|
| 333 |
+
prompt: Union[str, List[str]],
|
| 334 |
+
prompt_2: Union[str, List[str]],
|
| 335 |
+
device: Optional[torch.device] = None,
|
| 336 |
+
num_images_per_prompt: int = 1,
|
| 337 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 338 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 339 |
+
max_sequence_length: int = 512,
|
| 340 |
+
lora_scale: Optional[float] = None,
|
| 341 |
+
):
|
| 342 |
+
r"""
|
| 343 |
+
|
| 344 |
+
Args:
|
| 345 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 346 |
+
prompt to be encoded
|
| 347 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 348 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 349 |
+
used in all text-encoders
|
| 350 |
+
device: (`torch.device`):
|
| 351 |
+
torch device
|
| 352 |
+
num_images_per_prompt (`int`):
|
| 353 |
+
number of images that should be generated per prompt
|
| 354 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 355 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 356 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 357 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 358 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 359 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 360 |
+
lora_scale (`float`, *optional*):
|
| 361 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 362 |
+
"""
|
| 363 |
+
device = device or self._execution_device
|
| 364 |
+
|
| 365 |
+
# set lora scale so that monkey patched LoRA
|
| 366 |
+
# function of text encoder can correctly access it
|
| 367 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
| 368 |
+
self._lora_scale = lora_scale
|
| 369 |
+
|
| 370 |
+
# dynamically adjust the LoRA scale
|
| 371 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 372 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 373 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 374 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 375 |
+
|
| 376 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 377 |
+
|
| 378 |
+
if prompt_embeds is None:
|
| 379 |
+
prompt_2 = prompt_2 or prompt
|
| 380 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 381 |
+
|
| 382 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
| 383 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
| 384 |
+
prompt=prompt,
|
| 385 |
+
device=device,
|
| 386 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 387 |
+
)
|
| 388 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
| 389 |
+
prompt=prompt_2,
|
| 390 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 391 |
+
max_sequence_length=max_sequence_length,
|
| 392 |
+
device=device,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
if self.text_encoder is not None:
|
| 396 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 397 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 398 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 399 |
+
|
| 400 |
+
if self.text_encoder_2 is not None:
|
| 401 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 402 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 403 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 404 |
+
|
| 405 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
| 406 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 407 |
+
|
| 408 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
| 409 |
+
|
| 410 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
| 411 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
| 412 |
+
|
| 413 |
+
if not isinstance(image, torch.Tensor):
|
| 414 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 415 |
+
|
| 416 |
+
image = image.to(device=device, dtype=dtype)
|
| 417 |
+
image_embeds = self.image_encoder(image).image_embeds
|
| 418 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
| 419 |
+
return image_embeds
|
| 420 |
+
|
| 421 |
+
def prepare_ip_adapter_image_embeds(
|
| 422 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
|
| 423 |
+
):
|
| 424 |
+
image_embeds = []
|
| 425 |
+
if ip_adapter_image_embeds is None:
|
| 426 |
+
if not isinstance(ip_adapter_image, list):
|
| 427 |
+
ip_adapter_image = [ip_adapter_image]
|
| 428 |
+
|
| 429 |
+
if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
| 430 |
+
raise ValueError(
|
| 431 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
for single_ip_adapter_image in ip_adapter_image:
|
| 435 |
+
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
|
| 436 |
+
image_embeds.append(single_image_embeds[None, :])
|
| 437 |
+
else:
|
| 438 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 439 |
+
ip_adapter_image_embeds = [ip_adapter_image_embeds]
|
| 440 |
+
|
| 441 |
+
if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
| 442 |
+
raise ValueError(
|
| 443 |
+
f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
| 447 |
+
image_embeds.append(single_image_embeds)
|
| 448 |
+
|
| 449 |
+
ip_adapter_image_embeds = []
|
| 450 |
+
for single_image_embeds in image_embeds:
|
| 451 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 452 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
| 453 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
| 454 |
+
|
| 455 |
+
return ip_adapter_image_embeds
|
| 456 |
+
|
| 457 |
+
def check_inputs(
|
| 458 |
+
self,
|
| 459 |
+
prompt,
|
| 460 |
+
prompt_2,
|
| 461 |
+
height,
|
| 462 |
+
width,
|
| 463 |
+
negative_prompt=None,
|
| 464 |
+
negative_prompt_2=None,
|
| 465 |
+
prompt_embeds=None,
|
| 466 |
+
negative_prompt_embeds=None,
|
| 467 |
+
pooled_prompt_embeds=None,
|
| 468 |
+
negative_pooled_prompt_embeds=None,
|
| 469 |
+
callback_on_step_end_tensor_inputs=None,
|
| 470 |
+
max_sequence_length=None,
|
| 471 |
+
):
|
| 472 |
+
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
| 473 |
+
logger.warning(
|
| 474 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 478 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 479 |
+
):
|
| 480 |
+
raise ValueError(
|
| 481 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
if prompt is not None and prompt_embeds is not None:
|
| 485 |
+
raise ValueError(
|
| 486 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 487 |
+
" only forward one of the two."
|
| 488 |
+
)
|
| 489 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 490 |
+
raise ValueError(
|
| 491 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 492 |
+
" only forward one of the two."
|
| 493 |
+
)
|
| 494 |
+
elif prompt is None and prompt_embeds is None:
|
| 495 |
+
raise ValueError(
|
| 496 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 497 |
+
)
|
| 498 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 499 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 500 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 501 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 502 |
+
|
| 503 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 504 |
+
raise ValueError(
|
| 505 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 506 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 507 |
+
)
|
| 508 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 509 |
+
raise ValueError(
|
| 510 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 511 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 515 |
+
raise ValueError(
|
| 516 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 517 |
+
)
|
| 518 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 519 |
+
raise ValueError(
|
| 520 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 524 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 525 |
+
|
| 526 |
+
@staticmethod
|
| 527 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 528 |
+
latent_image_ids = torch.zeros(height, width, 3)
|
| 529 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
| 530 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
| 531 |
+
|
| 532 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 533 |
+
|
| 534 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 535 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 539 |
+
|
| 540 |
+
@staticmethod
|
| 541 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
| 542 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
| 543 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
| 544 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
| 545 |
+
|
| 546 |
+
return latents
|
| 547 |
+
|
| 548 |
+
@staticmethod
|
| 549 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
| 550 |
+
batch_size, num_patches, channels = latents.shape
|
| 551 |
+
|
| 552 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
| 553 |
+
# latent height and width to be divisible by 2.
|
| 554 |
+
height = 2 * (int(height) // (vae_scale_factor * 2))
|
| 555 |
+
width = 2 * (int(width) // (vae_scale_factor * 2))
|
| 556 |
+
|
| 557 |
+
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
| 558 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
| 559 |
+
|
| 560 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
|
| 561 |
+
|
| 562 |
+
return latents
|
| 563 |
+
|
| 564 |
+
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
|
| 565 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
| 566 |
+
if isinstance(generator, list):
|
| 567 |
+
image_latents = [
|
| 568 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
| 569 |
+
for i in range(image.shape[0])
|
| 570 |
+
]
|
| 571 |
+
image_latents = torch.cat(image_latents, dim=0)
|
| 572 |
+
else:
|
| 573 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
| 574 |
+
|
| 575 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 576 |
+
|
| 577 |
+
return image_latents
|
| 578 |
+
|
| 579 |
+
def enable_vae_slicing(self):
|
| 580 |
+
r"""
|
| 581 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 582 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 583 |
+
"""
|
| 584 |
+
self.vae.enable_slicing()
|
| 585 |
+
|
| 586 |
+
def disable_vae_slicing(self):
|
| 587 |
+
r"""
|
| 588 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
| 589 |
+
computing decoding in one step.
|
| 590 |
+
"""
|
| 591 |
+
self.vae.disable_slicing()
|
| 592 |
+
|
| 593 |
+
def enable_vae_tiling(self):
|
| 594 |
+
r"""
|
| 595 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 596 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 597 |
+
processing larger images.
|
| 598 |
+
"""
|
| 599 |
+
self.vae.enable_tiling()
|
| 600 |
+
|
| 601 |
+
def disable_vae_tiling(self):
|
| 602 |
+
r"""
|
| 603 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
| 604 |
+
computing decoding in one step.
|
| 605 |
+
"""
|
| 606 |
+
self.vae.disable_tiling()
|
| 607 |
+
|
| 608 |
+
def prepare_latents(
|
| 609 |
+
self,
|
| 610 |
+
image: torch.Tensor,
|
| 611 |
+
batch_size: int,
|
| 612 |
+
num_channels_latents: int,
|
| 613 |
+
height: int,
|
| 614 |
+
width: int,
|
| 615 |
+
dtype: torch.dtype,
|
| 616 |
+
device: torch.device,
|
| 617 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 618 |
+
latents: Optional[torch.Tensor] = None,
|
| 619 |
+
):
|
| 620 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 621 |
+
raise ValueError(
|
| 622 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 623 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
# VAE applies 8x compression on images but we must also account for packing which requires
|
| 627 |
+
# latent height and width to be divisible by 2.
|
| 628 |
+
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
| 629 |
+
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
| 630 |
+
shape = (batch_size, num_channels_latents, height, width)
|
| 631 |
+
|
| 632 |
+
image = image.to(device=device, dtype=dtype)
|
| 633 |
+
if image.shape[1] != self.latent_channels:
|
| 634 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
| 635 |
+
else:
|
| 636 |
+
image_latents = image
|
| 637 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
| 638 |
+
# expand init_latents for batch_size
|
| 639 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
| 640 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
| 641 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
| 642 |
+
raise ValueError(
|
| 643 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
| 644 |
+
)
|
| 645 |
+
else:
|
| 646 |
+
image_latents = torch.cat([image_latents], dim=0)
|
| 647 |
+
|
| 648 |
+
image_latent_height, image_latent_width = image_latents.shape[2:]
|
| 649 |
+
image_latents = self._pack_latents(
|
| 650 |
+
image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
| 654 |
+
image_ids = self._prepare_latent_image_ids(
|
| 655 |
+
batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
|
| 656 |
+
)
|
| 657 |
+
# image ids are the same as latent ids with the first dimension set to 1 instead of 0
|
| 658 |
+
image_ids[..., 0] = 1
|
| 659 |
+
|
| 660 |
+
if latents is None:
|
| 661 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 662 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
| 663 |
+
else:
|
| 664 |
+
latents = latents.to(device=device, dtype=dtype)
|
| 665 |
+
|
| 666 |
+
return latents, image_latents, latent_ids, image_ids
|
| 667 |
+
|
| 668 |
+
@property
|
| 669 |
+
def guidance_scale(self):
|
| 670 |
+
return self._guidance_scale
|
| 671 |
+
|
| 672 |
+
@property
|
| 673 |
+
def joint_attention_kwargs(self):
|
| 674 |
+
return self._joint_attention_kwargs
|
| 675 |
+
|
| 676 |
+
@property
|
| 677 |
+
def num_timesteps(self):
|
| 678 |
+
return self._num_timesteps
|
| 679 |
+
|
| 680 |
+
@property
|
| 681 |
+
def current_timestep(self):
|
| 682 |
+
return self._current_timestep
|
| 683 |
+
|
| 684 |
+
@property
|
| 685 |
+
def interrupt(self):
|
| 686 |
+
return self._interrupt
|
| 687 |
+
|
| 688 |
+
@torch.no_grad()
|
| 689 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 690 |
+
def __call__(
|
| 691 |
+
self,
|
| 692 |
+
image: Optional[PipelineImageInput] = None,
|
| 693 |
+
prompt: Union[str, List[str]] = None,
|
| 694 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 695 |
+
negative_prompt: Union[str, List[str]] = None,
|
| 696 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 697 |
+
true_cfg_scale: float = 1.0,
|
| 698 |
+
height: Optional[int] = None,
|
| 699 |
+
width: Optional[int] = None,
|
| 700 |
+
num_inference_steps: int = 28,
|
| 701 |
+
sigmas: Optional[List[float]] = None,
|
| 702 |
+
guidance_scale: float = 3.5,
|
| 703 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 704 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 705 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 706 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 707 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 708 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 709 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 710 |
+
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 711 |
+
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 712 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 713 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 714 |
+
output_type: Optional[str] = "pil",
|
| 715 |
+
return_dict: bool = True,
|
| 716 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 717 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 718 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 719 |
+
max_sequence_length: int = 512,
|
| 720 |
+
max_area: int = 1024**2,
|
| 721 |
+
):
|
| 722 |
+
r"""
|
| 723 |
+
Function invoked when calling the pipeline for generation.
|
| 724 |
+
|
| 725 |
+
Args:
|
| 726 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
| 727 |
+
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
| 728 |
+
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
| 729 |
+
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
| 730 |
+
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
| 731 |
+
latents as `image`, but if passing latents directly it is not encoded again.
|
| 732 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 733 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 734 |
+
instead.
|
| 735 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 736 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 737 |
+
will be used instead.
|
| 738 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 739 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 740 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
| 741 |
+
not greater than `1`).
|
| 742 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 743 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 744 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 745 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
| 746 |
+
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
| 747 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 748 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 749 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 750 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 751 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 752 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 753 |
+
expense of slower inference.
|
| 754 |
+
sigmas (`List[float]`, *optional*):
|
| 755 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 756 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 757 |
+
will be used.
|
| 758 |
+
guidance_scale (`float`, *optional*, defaults to 3.5):
|
| 759 |
+
Guidance scale as defined in [Classifier-Free Diffusion
|
| 760 |
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
| 761 |
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
| 762 |
+
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
| 763 |
+
the text `prompt`, usually at the expense of lower image quality.
|
| 764 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 765 |
+
The number of images to generate per prompt.
|
| 766 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 767 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 768 |
+
to make generation deterministic.
|
| 769 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 770 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 771 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 772 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 773 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 774 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 775 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 776 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 777 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 778 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 779 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
| 780 |
+
Optional image input to work with IP Adapters.
|
| 781 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 782 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 783 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
| 784 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 785 |
+
negative_ip_adapter_image:
|
| 786 |
+
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 787 |
+
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 788 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 789 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
| 790 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 791 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 792 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 793 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 794 |
+
argument.
|
| 795 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 796 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 797 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 798 |
+
input argument.
|
| 799 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 800 |
+
The output format of the generate image. Choose between
|
| 801 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 802 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 803 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
| 804 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 805 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 806 |
+
`self.processor` in
|
| 807 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 808 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 809 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 810 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 811 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 812 |
+
`callback_on_step_end_tensor_inputs`.
|
| 813 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 814 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 815 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 816 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 817 |
+
max_sequence_length (`int` defaults to 512):
|
| 818 |
+
Maximum sequence length to use with the `prompt`.
|
| 819 |
+
max_area (`int`, defaults to `1024 ** 2`):
|
| 820 |
+
The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
|
| 821 |
+
area while maintaining the aspect ratio.
|
| 822 |
+
|
| 823 |
+
Examples:
|
| 824 |
+
|
| 825 |
+
Returns:
|
| 826 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
| 827 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
| 828 |
+
images.
|
| 829 |
+
"""
|
| 830 |
+
|
| 831 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 832 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 833 |
+
|
| 834 |
+
original_height, original_width = height, width
|
| 835 |
+
aspect_ratio = width / height
|
| 836 |
+
width = round((max_area * aspect_ratio) ** 0.5)
|
| 837 |
+
height = round((max_area / aspect_ratio) ** 0.5)
|
| 838 |
+
|
| 839 |
+
multiple_of = self.vae_scale_factor * 2
|
| 840 |
+
width = width // multiple_of * multiple_of
|
| 841 |
+
height = height // multiple_of * multiple_of
|
| 842 |
+
|
| 843 |
+
if height != original_height or width != original_width:
|
| 844 |
+
logger.warning(
|
| 845 |
+
f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
# 1. Check inputs. Raise error if not correct
|
| 849 |
+
self.check_inputs(
|
| 850 |
+
prompt,
|
| 851 |
+
prompt_2,
|
| 852 |
+
height,
|
| 853 |
+
width,
|
| 854 |
+
negative_prompt=negative_prompt,
|
| 855 |
+
negative_prompt_2=negative_prompt_2,
|
| 856 |
+
prompt_embeds=prompt_embeds,
|
| 857 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 858 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 859 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 860 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 861 |
+
max_sequence_length=max_sequence_length,
|
| 862 |
+
)
|
| 863 |
+
|
| 864 |
+
self._guidance_scale = guidance_scale
|
| 865 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 866 |
+
self._current_timestep = None
|
| 867 |
+
self._interrupt = False
|
| 868 |
+
|
| 869 |
+
# 2. Define call parameters
|
| 870 |
+
if prompt is not None and isinstance(prompt, str):
|
| 871 |
+
batch_size = 1
|
| 872 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 873 |
+
batch_size = len(prompt)
|
| 874 |
+
else:
|
| 875 |
+
batch_size = prompt_embeds.shape[0]
|
| 876 |
+
|
| 877 |
+
device = self._execution_device
|
| 878 |
+
|
| 879 |
+
lora_scale = (
|
| 880 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 881 |
+
)
|
| 882 |
+
has_neg_prompt = negative_prompt is not None or (
|
| 883 |
+
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
|
| 884 |
+
)
|
| 885 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
| 886 |
+
(
|
| 887 |
+
prompt_embeds,
|
| 888 |
+
pooled_prompt_embeds,
|
| 889 |
+
text_ids,
|
| 890 |
+
) = self.encode_prompt(
|
| 891 |
+
prompt=prompt,
|
| 892 |
+
prompt_2=prompt_2,
|
| 893 |
+
prompt_embeds=prompt_embeds,
|
| 894 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 895 |
+
device=device,
|
| 896 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 897 |
+
max_sequence_length=max_sequence_length,
|
| 898 |
+
lora_scale=lora_scale,
|
| 899 |
+
)
|
| 900 |
+
if do_true_cfg:
|
| 901 |
+
(
|
| 902 |
+
negative_prompt_embeds,
|
| 903 |
+
negative_pooled_prompt_embeds,
|
| 904 |
+
negative_text_ids,
|
| 905 |
+
) = self.encode_prompt(
|
| 906 |
+
prompt=negative_prompt,
|
| 907 |
+
prompt_2=negative_prompt_2,
|
| 908 |
+
prompt_embeds=negative_prompt_embeds,
|
| 909 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 910 |
+
device=device,
|
| 911 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 912 |
+
max_sequence_length=max_sequence_length,
|
| 913 |
+
lora_scale=lora_scale,
|
| 914 |
+
)
|
| 915 |
+
|
| 916 |
+
# 3. Preprocess image
|
| 917 |
+
if not torch.is_tensor(image) or image.size(1) == self.latent_channels:
|
| 918 |
+
image_width, image_height = self.image_processor.get_default_height_width(image)
|
| 919 |
+
aspect_ratio = image_width / image_height
|
| 920 |
+
|
| 921 |
+
# Kontext is trained on specific resolutions, using one of them is recommended
|
| 922 |
+
_, image_width, image_height = min(
|
| 923 |
+
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
|
| 924 |
+
)
|
| 925 |
+
image_width = image_width // multiple_of * multiple_of
|
| 926 |
+
image_height = image_height // multiple_of * multiple_of
|
| 927 |
+
image = self.image_processor.resize(image, image_height, image_width)
|
| 928 |
+
image = self.image_processor.preprocess(image, image_height, image_width)
|
| 929 |
+
|
| 930 |
+
# 4. Prepare latent variables
|
| 931 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 932 |
+
latents, image_latents, latent_ids, image_ids = self.prepare_latents(
|
| 933 |
+
image,
|
| 934 |
+
batch_size * num_images_per_prompt,
|
| 935 |
+
num_channels_latents,
|
| 936 |
+
height,
|
| 937 |
+
width,
|
| 938 |
+
prompt_embeds.dtype,
|
| 939 |
+
device,
|
| 940 |
+
generator,
|
| 941 |
+
latents,
|
| 942 |
+
)
|
| 943 |
+
latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
|
| 944 |
+
|
| 945 |
+
# 5. Prepare timesteps
|
| 946 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 947 |
+
image_seq_len = latents.shape[1]
|
| 948 |
+
mu = calculate_shift(
|
| 949 |
+
image_seq_len,
|
| 950 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
| 951 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
| 952 |
+
self.scheduler.config.get("base_shift", 0.5),
|
| 953 |
+
self.scheduler.config.get("max_shift", 1.15),
|
| 954 |
+
)
|
| 955 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 956 |
+
self.scheduler,
|
| 957 |
+
num_inference_steps,
|
| 958 |
+
device,
|
| 959 |
+
sigmas=sigmas,
|
| 960 |
+
mu=mu,
|
| 961 |
+
)
|
| 962 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 963 |
+
self._num_timesteps = len(timesteps)
|
| 964 |
+
|
| 965 |
+
# handle guidance
|
| 966 |
+
if self.transformer.config.guidance_embeds:
|
| 967 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 968 |
+
guidance = guidance.expand(latents.shape[0])
|
| 969 |
+
else:
|
| 970 |
+
guidance = None
|
| 971 |
+
|
| 972 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
|
| 973 |
+
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
|
| 974 |
+
):
|
| 975 |
+
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
| 976 |
+
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
| 977 |
+
|
| 978 |
+
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
|
| 979 |
+
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
|
| 980 |
+
):
|
| 981 |
+
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
| 982 |
+
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
| 983 |
+
|
| 984 |
+
if self.joint_attention_kwargs is None:
|
| 985 |
+
self._joint_attention_kwargs = {}
|
| 986 |
+
|
| 987 |
+
image_embeds = None
|
| 988 |
+
negative_image_embeds = None
|
| 989 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 990 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 991 |
+
ip_adapter_image,
|
| 992 |
+
ip_adapter_image_embeds,
|
| 993 |
+
device,
|
| 994 |
+
batch_size * num_images_per_prompt,
|
| 995 |
+
)
|
| 996 |
+
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
|
| 997 |
+
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 998 |
+
negative_ip_adapter_image,
|
| 999 |
+
negative_ip_adapter_image_embeds,
|
| 1000 |
+
device,
|
| 1001 |
+
batch_size * num_images_per_prompt,
|
| 1002 |
+
)
|
| 1003 |
+
|
| 1004 |
+
# 6. Denoising loop
|
| 1005 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1006 |
+
for i, t in enumerate(timesteps):
|
| 1007 |
+
if self.interrupt:
|
| 1008 |
+
continue
|
| 1009 |
+
|
| 1010 |
+
self._current_timestep = t
|
| 1011 |
+
if image_embeds is not None:
|
| 1012 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
|
| 1013 |
+
|
| 1014 |
+
latent_model_input = torch.cat([latents, image_latents], dim=1)
|
| 1015 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 1016 |
+
|
| 1017 |
+
noise_pred = self.transformer(
|
| 1018 |
+
hidden_states=latent_model_input,
|
| 1019 |
+
timestep=timestep / 1000,
|
| 1020 |
+
guidance=guidance,
|
| 1021 |
+
pooled_projections=pooled_prompt_embeds,
|
| 1022 |
+
encoder_hidden_states=prompt_embeds,
|
| 1023 |
+
txt_ids=text_ids,
|
| 1024 |
+
img_ids=latent_ids,
|
| 1025 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1026 |
+
return_dict=False,
|
| 1027 |
+
)[0]
|
| 1028 |
+
noise_pred = noise_pred[:, : latents.size(1)]
|
| 1029 |
+
|
| 1030 |
+
if do_true_cfg:
|
| 1031 |
+
if negative_image_embeds is not None:
|
| 1032 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
|
| 1033 |
+
neg_noise_pred = self.transformer(
|
| 1034 |
+
hidden_states=latent_model_input,
|
| 1035 |
+
timestep=timestep / 1000,
|
| 1036 |
+
guidance=guidance,
|
| 1037 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
| 1038 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 1039 |
+
txt_ids=negative_text_ids,
|
| 1040 |
+
img_ids=latent_ids,
|
| 1041 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1042 |
+
return_dict=False,
|
| 1043 |
+
)[0]
|
| 1044 |
+
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
|
| 1045 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
| 1046 |
+
|
| 1047 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1048 |
+
latents_dtype = latents.dtype
|
| 1049 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1050 |
+
|
| 1051 |
+
if latents.dtype != latents_dtype:
|
| 1052 |
+
if torch.backends.mps.is_available():
|
| 1053 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1054 |
+
latents = latents.to(latents_dtype)
|
| 1055 |
+
|
| 1056 |
+
if callback_on_step_end is not None:
|
| 1057 |
+
callback_kwargs = {}
|
| 1058 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1059 |
+
callback_kwargs[k] = locals()[k]
|
| 1060 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1061 |
+
|
| 1062 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1063 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1064 |
+
|
| 1065 |
+
# call the callback, if provided
|
| 1066 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1067 |
+
progress_bar.update()
|
| 1068 |
+
|
| 1069 |
+
if XLA_AVAILABLE:
|
| 1070 |
+
xm.mark_step()
|
| 1071 |
+
|
| 1072 |
+
self._current_timestep = None
|
| 1073 |
+
|
| 1074 |
+
if output_type == "latent":
|
| 1075 |
+
image = latents
|
| 1076 |
+
else:
|
| 1077 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 1078 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1079 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1080 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1081 |
+
|
| 1082 |
+
# Offload all models
|
| 1083 |
+
self.maybe_free_model_hooks()
|
| 1084 |
+
|
| 1085 |
+
if not return_dict:
|
| 1086 |
+
return (image,)
|
| 1087 |
+
|
| 1088 |
+
return FluxPipelineOutput(images=image)
|