File size: 4,474 Bytes
a2b6d64
d0e2871
 
a2b6d64
 
 
2044733
a2b6d64
bcf356c
2044733
 
 
 
 
 
bcf356c
3a8bfcd
 
2044733
bcf356c
 
6340216
bcf356c
 
2044733
dbcff35
 
 
 
 
 
 
 
 
 
 
 
3ab6021
cf4cb00
2044733
 
3a8bfcd
2044733
3a8bfcd
62d1e32
3a8bfcd
2a7381c
3a8bfcd
 
 
 
a2b6d64
3a8bfcd
 
 
 
a2b6d64
47f5422
a2b6d64
47f5422
a2b6d64
 
47f5422
a2b6d64
 
 
47f5422
a2b6d64
 
47f5422
 
2044733
47f5422
 
 
 
 
 
 
 
 
 
 
a2b6d64
2044733
7c13927
bcf356c
d7e7825
 
 
 
98d8559
d7e7825
 
98d8559
d7e7825
a2b6d64
d0e2871
263b331
98d8559
 
 
 
 
 
 
 
3a8bfcd
2bebf02
 
 
98d8559
 
 
 
2bebf02
52c90eb
2bebf02
3d2e7b8
297d0ae
d7e7825
a2b6d64
 
 
3a8bfcd
 
 
 
 
 
 
1af9e28
d7e7825
d0e2871
 
 
263b331
d7e7825
 
a2b6d64
 
 
 
d7e7825
a2b6d64
 
 
3a8bfcd
d7e7825
d0e2871
d7e7825
d0e2871
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import base64
import logging
import time
from io import BytesIO

import torch
from fastapi import Body, FastAPI, File, HTTPException, Query, UploadFile
from PIL import Image
from pydantic import BaseModel
from qwen_vl_utils import process_vision_info
from transformers import (
    AutoProcessor,
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
)

app = FastAPI()


# Define request model
class PredictRequest(BaseModel):
    image_base64: list[str]
    prompt: str


# checkpoint = "Qwen/Qwen2-VL-2B-Instruct"
# min_pixels = 256 * 28 * 28
# max_pixels = 1280 * 28 * 28
# processor = AutoProcessor.from_pretrained(
#     checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
# )
# model = Qwen2VLForConditionalGeneration.from_pretrained(
#     checkpoint,
#     torch_dtype=torch.bfloat16,
#     device_map="auto",
#     # attn_implementation="flash_attention_2",
# )
# checkpoint = "Qwen/Qwen2.5-VL-7B-Instruct"
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct-AWQ"
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
    checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    checkpoint,
    torch_dtype="auto",
    device_map="auto",
    # attn_implementation="flash_attention_2",
)


@app.get("/")
def read_root():
    return {"message": "API is live. Use the /predict endpoint."}


def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
    """
    Converts an image from file data to a Base64-encoded string with optimized size.
    """
    try:
        with Image.open(image_data) as img:
            img = img.convert("RGB")
            img.thumbnail(max_size, Image.LANCZOS)
            buffer = BytesIO()
            img.save(buffer, format="JPEG", quality=quality)
            return base64.b64encode(buffer.getvalue()).decode("utf-8")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")


@app.post("/encode-image/")
async def upload_and_encode_image(file: UploadFile = File(...)):
    """
    Endpoint to upload an image file and return its Base64-encoded representation.
    """
    try:
        image_data = BytesIO(await file.read())
        encoded_string = encode_image(image_data)
        return {"filename": file.filename, "encoded_image": encoded_string}
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Invalid file: {e}")


@app.post("/predict")
def predict(data: PredictRequest):
    """
    Generates a description for an image using the Qwen-2-VL model.

    Args:
        data (PredictRequest): The request containing encoded images and a prompt.

    Returns:
        dict: The generated description of the image(s).
    """

    logging.warning("Calling /predict endpoint...")

    # Ensure image_base64 is a list (even if a single image is provided)
    image_list = (
        data.image_base64
        if isinstance(data.image_base64, list)
        else [data.image_base64]
    )

    # Create the input message structure with multiple images
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image}"}
                for image in image_list
            ]
            + [{"type": "text", "text": data.prompt}],
        }
    ]

    logging.info("Processing inputs...", len(image_list))

    # Prepare inputs for the model
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(model.device)

    logging.warning("Starting generation...")

    start_time = time.time()

    # Generate the output
    generated_ids = model.generate(**inputs, max_new_tokens=2056)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )

    logging.warning(f"Generation completed in {time.time() - start_time:.2f}s.")

    return {"response": output_text[0] if output_text else "No description generated."}