Spaces:
Running
Running
File size: 4,474 Bytes
a2b6d64 d0e2871 a2b6d64 2044733 a2b6d64 bcf356c 2044733 bcf356c 3a8bfcd 2044733 bcf356c 6340216 bcf356c 2044733 dbcff35 3ab6021 cf4cb00 2044733 3a8bfcd 2044733 3a8bfcd 62d1e32 3a8bfcd 2a7381c 3a8bfcd a2b6d64 3a8bfcd a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 47f5422 2044733 47f5422 a2b6d64 2044733 7c13927 bcf356c d7e7825 98d8559 d7e7825 98d8559 d7e7825 a2b6d64 d0e2871 263b331 98d8559 3a8bfcd 2bebf02 98d8559 2bebf02 52c90eb 2bebf02 3d2e7b8 297d0ae d7e7825 a2b6d64 3a8bfcd 1af9e28 d7e7825 d0e2871 263b331 d7e7825 a2b6d64 d7e7825 a2b6d64 3a8bfcd d7e7825 d0e2871 d7e7825 d0e2871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import base64
import logging
import time
from io import BytesIO
import torch
from fastapi import Body, FastAPI, File, HTTPException, Query, UploadFile
from PIL import Image
from pydantic import BaseModel
from qwen_vl_utils import process_vision_info
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
)
app = FastAPI()
# Define request model
class PredictRequest(BaseModel):
image_base64: list[str]
prompt: str
# checkpoint = "Qwen/Qwen2-VL-2B-Instruct"
# min_pixels = 256 * 28 * 28
# max_pixels = 1280 * 28 * 28
# processor = AutoProcessor.from_pretrained(
# checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
# )
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# checkpoint,
# torch_dtype=torch.bfloat16,
# device_map="auto",
# # attn_implementation="flash_attention_2",
# )
# checkpoint = "Qwen/Qwen2.5-VL-7B-Instruct"
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct-AWQ"
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
checkpoint,
torch_dtype="auto",
device_map="auto",
# attn_implementation="flash_attention_2",
)
@app.get("/")
def read_root():
return {"message": "API is live. Use the /predict endpoint."}
def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
"""
Converts an image from file data to a Base64-encoded string with optimized size.
"""
try:
with Image.open(image_data) as img:
img = img.convert("RGB")
img.thumbnail(max_size, Image.LANCZOS)
buffer = BytesIO()
img.save(buffer, format="JPEG", quality=quality)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")
@app.post("/encode-image/")
async def upload_and_encode_image(file: UploadFile = File(...)):
"""
Endpoint to upload an image file and return its Base64-encoded representation.
"""
try:
image_data = BytesIO(await file.read())
encoded_string = encode_image(image_data)
return {"filename": file.filename, "encoded_image": encoded_string}
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid file: {e}")
@app.post("/predict")
def predict(data: PredictRequest):
"""
Generates a description for an image using the Qwen-2-VL model.
Args:
data (PredictRequest): The request containing encoded images and a prompt.
Returns:
dict: The generated description of the image(s).
"""
logging.warning("Calling /predict endpoint...")
# Ensure image_base64 is a list (even if a single image is provided)
image_list = (
data.image_base64
if isinstance(data.image_base64, list)
else [data.image_base64]
)
# Create the input message structure with multiple images
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image;base64,{image}"}
for image in image_list
]
+ [{"type": "text", "text": data.prompt}],
}
]
logging.info("Processing inputs...", len(image_list))
# Prepare inputs for the model
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(model.device)
logging.warning("Starting generation...")
start_time = time.time()
# Generate the output
generated_ids = model.generate(**inputs, max_new_tokens=2056)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
logging.warning(f"Generation completed in {time.time() - start_time:.2f}s.")
return {"response": output_text[0] if output_text else "No description generated."}
|