File size: 6,496 Bytes
a2b6d64
 
 
 
3a8bfcd
a2b6d64
47f5422
3a8bfcd
d7e7825
3a8bfcd
bcf356c
 
 
3a8bfcd
 
bcf356c
 
 
 
 
dbcff35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8bfcd
dbcff35
 
 
3a8bfcd
dbcff35
3a8bfcd
 
 
 
 
 
a2b6d64
3a8bfcd
 
 
 
a2b6d64
47f5422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b6d64
47f5422
a2b6d64
 
47f5422
a2b6d64
 
 
47f5422
a2b6d64
 
47f5422
 
 
 
 
 
 
 
 
 
 
 
 
a2b6d64
7c13927
bcf356c
d7e7825
 
 
 
5dd1cbf
d7e7825
 
 
 
 
a2b6d64
d7e7825
 
3a8bfcd
2bebf02
 
 
 
 
 
 
52c90eb
2bebf02
d7e7825
a2b6d64
 
 
3a8bfcd
 
 
 
 
 
 
1af9e28
d7e7825
 
 
a2b6d64
 
 
 
d7e7825
a2b6d64
 
 
3a8bfcd
d7e7825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import base64
from io import BytesIO

import torch
from fastapi import FastAPI, Query
from PIL import Image
from fastapi import FastAPI, File, UploadFile, HTTPException
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, Qwen2VLForConditionalGeneration

from fastapi import FastAPI, Body
from pydantic import BaseModel

app = FastAPI()

# Define request model
class PredictRequest(BaseModel):
    image_base64: str
    prompt: str

# checkpoint = "Qwen/Qwen2-VL-2B-Instruct"
# min_pixels = 256 * 28 * 28
# max_pixels = 1280 * 28 * 28
# processor = AutoProcessor.from_pretrained(
#     checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
# )
# model = Qwen2VLForConditionalGeneration.from_pretrained(
#     checkpoint,
#     torch_dtype=torch.bfloat16,
#     device_map="auto",
#     # attn_implementation="flash_attention_2",
# )

checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained(
    checkpoint,
    min_pixels=min_pixels,
    max_pixels=max_pixels
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    checkpoint,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    # attn_implementation="flash_attention_2",
)


@app.get("/")
def read_root():
    return {"message": "API is live. Use the /predict endpoint."}


# def encode_image(image_path, max_size=(800, 800), quality=85):
#     """
#     Converts an image from a local file path to a Base64-encoded string with optimized size.

#     Args:
#         image_path (str): The path to the image file.
#         max_size (tuple): The maximum width and height of the resized image.
#         quality (int): The compression quality (1-100, higher means better quality but bigger size).

#     Returns:
#         str: Base64-encoded representation of the optimized image.
#     """
#     try:
#         with Image.open(image_path) as img:
#             # Convert to RGB (avoid issues with PNG transparency)
#             img = img.convert("RGB")

#             # Resize while maintaining aspect ratio
#             img.thumbnail(max_size, Image.LANCZOS)

#             # Save to buffer with compression
#             buffer = BytesIO()
#             img.save(
#                 buffer, format="JPEG", quality=quality
#             )  # Save as JPEG to reduce size
#             return base64.b64encode(buffer.getvalue()).decode("utf-8")
#     except Exception as e:
#         print(f"❌ Error encoding image {image_path}: {e}")
#         return None

def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
    """
    Converts an image from file data to a Base64-encoded string with optimized size.
    """
    try:
        with Image.open(image_data) as img:
            img = img.convert("RGB")
            img.thumbnail(max_size, Image.LANCZOS)
            buffer = BytesIO()
            img.save(buffer, format="JPEG", quality=quality)
            return base64.b64encode(buffer.getvalue()).decode("utf-8")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")

@app.post("/encode-image/")
async def upload_and_encode_image(file: UploadFile = File(...)):
    """
    Endpoint to upload an image file and return its Base64-encoded representation.
    """
    try:
        image_data = BytesIO(await file.read())
        encoded_string = encode_image(image_data)
        return {"filename": file.filename, "encoded_image": encoded_string}
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Invalid file: {e}")

@app.post("/predict")
def predict(data: PredictRequest):
    """
    Generates a description for an image using the Qwen-2-VL model.

    Args:
        data (any): The encoded image and the prompt to be used.
        prompt (str): The text prompt to guide the model's response.

    Returns:
        str: The generated description of the image.
    """


    # Create the input message structure
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{data.image_base64}"},
                {"type": "text", "text": data.prompt},
            ],
        }
    ]

    # Prepare inputs for the model
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to(model.device)

    # Generate the output
    generated_ids = model.generate(**inputs, max_new_tokens=2056)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )

    return {"response": output_text[0] if output_text else "No description generated."}

# @app.get("/predict")
# def predict(image_url: str = Query(...), prompt: str = Query(...)):

#     image = encode_image(image_url)

#     messages = [
#         {
#             "role": "system",
#             "content": "You are a helpful assistant with vision abilities.",
#         },
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": f"data:image;base64,{image}"},
#                 {"type": "text", "text": prompt},
#             ],
#         },
#     ]
#     text = processor.apply_chat_template(
#         messages, tokenize=False, add_generation_prompt=True
#     )
#     image_inputs, video_inputs = process_vision_info(messages)
#     inputs = processor(
#         text=[text],
#         images=image_inputs,
#         videos=video_inputs,
#         padding=True,
#         return_tensors="pt",
#     ).to(model.device)
#     with torch.no_grad():
#         generated_ids = model.generate(**inputs, max_new_tokens=128)
#     generated_ids_trimmed = [
#         out_ids[len(in_ids) :]
#         for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
#     ]
#     output_texts = processor.batch_decode(
#         generated_ids_trimmed,
#         skip_special_tokens=True,
#         clean_up_tokenization_spaces=False,
#     )
#     return {"response": output_texts[0]}