Spaces:
Running
Running
File size: 6,496 Bytes
a2b6d64 3a8bfcd a2b6d64 47f5422 3a8bfcd d7e7825 3a8bfcd bcf356c 3a8bfcd bcf356c dbcff35 3a8bfcd dbcff35 3a8bfcd dbcff35 3a8bfcd a2b6d64 3a8bfcd a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 47f5422 a2b6d64 7c13927 bcf356c d7e7825 5dd1cbf d7e7825 a2b6d64 d7e7825 3a8bfcd 2bebf02 52c90eb 2bebf02 d7e7825 a2b6d64 3a8bfcd 1af9e28 d7e7825 a2b6d64 d7e7825 a2b6d64 3a8bfcd d7e7825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import base64
from io import BytesIO
import torch
from fastapi import FastAPI, Query
from PIL import Image
from fastapi import FastAPI, File, UploadFile, HTTPException
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, Qwen2VLForConditionalGeneration
from fastapi import FastAPI, Body
from pydantic import BaseModel
app = FastAPI()
# Define request model
class PredictRequest(BaseModel):
image_base64: str
prompt: str
# checkpoint = "Qwen/Qwen2-VL-2B-Instruct"
# min_pixels = 256 * 28 * 28
# max_pixels = 1280 * 28 * 28
# processor = AutoProcessor.from_pretrained(
# checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
# )
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# checkpoint,
# torch_dtype=torch.bfloat16,
# device_map="auto",
# # attn_implementation="flash_attention_2",
# )
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained(
checkpoint,
min_pixels=min_pixels,
max_pixels=max_pixels
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
checkpoint,
torch_dtype=torch.bfloat16,
device_map="auto",
# attn_implementation="flash_attention_2",
)
@app.get("/")
def read_root():
return {"message": "API is live. Use the /predict endpoint."}
# def encode_image(image_path, max_size=(800, 800), quality=85):
# """
# Converts an image from a local file path to a Base64-encoded string with optimized size.
# Args:
# image_path (str): The path to the image file.
# max_size (tuple): The maximum width and height of the resized image.
# quality (int): The compression quality (1-100, higher means better quality but bigger size).
# Returns:
# str: Base64-encoded representation of the optimized image.
# """
# try:
# with Image.open(image_path) as img:
# # Convert to RGB (avoid issues with PNG transparency)
# img = img.convert("RGB")
# # Resize while maintaining aspect ratio
# img.thumbnail(max_size, Image.LANCZOS)
# # Save to buffer with compression
# buffer = BytesIO()
# img.save(
# buffer, format="JPEG", quality=quality
# ) # Save as JPEG to reduce size
# return base64.b64encode(buffer.getvalue()).decode("utf-8")
# except Exception as e:
# print(f"❌ Error encoding image {image_path}: {e}")
# return None
def encode_image(image_data: BytesIO, max_size=(800, 800), quality=85):
"""
Converts an image from file data to a Base64-encoded string with optimized size.
"""
try:
with Image.open(image_data) as img:
img = img.convert("RGB")
img.thumbnail(max_size, Image.LANCZOS)
buffer = BytesIO()
img.save(buffer, format="JPEG", quality=quality)
return base64.b64encode(buffer.getvalue()).decode("utf-8")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error encoding image: {e}")
@app.post("/encode-image/")
async def upload_and_encode_image(file: UploadFile = File(...)):
"""
Endpoint to upload an image file and return its Base64-encoded representation.
"""
try:
image_data = BytesIO(await file.read())
encoded_string = encode_image(image_data)
return {"filename": file.filename, "encoded_image": encoded_string}
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid file: {e}")
@app.post("/predict")
def predict(data: PredictRequest):
"""
Generates a description for an image using the Qwen-2-VL model.
Args:
data (any): The encoded image and the prompt to be used.
prompt (str): The text prompt to guide the model's response.
Returns:
str: The generated description of the image.
"""
# Create the input message structure
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image;base64,{data.image_base64}"},
{"type": "text", "text": data.prompt},
],
}
]
# Prepare inputs for the model
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(model.device)
# Generate the output
generated_ids = model.generate(**inputs, max_new_tokens=2056)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
return {"response": output_text[0] if output_text else "No description generated."}
# @app.get("/predict")
# def predict(image_url: str = Query(...), prompt: str = Query(...)):
# image = encode_image(image_url)
# messages = [
# {
# "role": "system",
# "content": "You are a helpful assistant with vision abilities.",
# },
# {
# "role": "user",
# "content": [
# {"type": "image", "image": f"data:image;base64,{image}"},
# {"type": "text", "text": prompt},
# ],
# },
# ]
# text = processor.apply_chat_template(
# messages, tokenize=False, add_generation_prompt=True
# )
# image_inputs, video_inputs = process_vision_info(messages)
# inputs = processor(
# text=[text],
# images=image_inputs,
# videos=video_inputs,
# padding=True,
# return_tensors="pt",
# ).to(model.device)
# with torch.no_grad():
# generated_ids = model.generate(**inputs, max_new_tokens=128)
# generated_ids_trimmed = [
# out_ids[len(in_ids) :]
# for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
# ]
# output_texts = processor.batch_decode(
# generated_ids_trimmed,
# skip_special_tokens=True,
# clean_up_tokenization_spaces=False,
# )
# return {"response": output_texts[0]}
|