File size: 4,814 Bytes
a2b6d64
 
 
 
3a8bfcd
a2b6d64
3a8bfcd
d7e7825
3a8bfcd
 
 
077ebc4
a2b6d64
 
3a8bfcd
a2b6d64
3a8bfcd
d7e7825
3a8bfcd
 
 
 
 
 
a2b6d64
3a8bfcd
 
 
 
a2b6d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8bfcd
d7e7825
 
 
 
 
 
 
 
 
 
 
a2b6d64
 
 
d7e7825
 
3a8bfcd
a2b6d64
 
 
 
 
 
d7e7825
3a8bfcd
d7e7825
 
a2b6d64
 
 
3a8bfcd
 
 
 
 
 
 
d7e7825
 
 
 
a2b6d64
 
 
 
d7e7825
a2b6d64
 
 
3a8bfcd
d7e7825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import base64
from io import BytesIO

import torch
from fastapi import FastAPI, Query
from PIL import Image
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, Qwen2VLForConditionalGeneration

app = FastAPI()

checkpoint = "Qwen/Qwen2-VL-7B-Instruct"
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
    checkpoint, min_pixels=min_pixels, max_pixels=max_pixels
)
model = Qwen2VLForConditionalGeneration.from_pretrained(
    checkpoint,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    # attn_implementation="flash_attention_2",
)


@app.get("/")
def read_root():
    return {"message": "API is live. Use the /predict endpoint."}


def encode_image(image_path, max_size=(800, 800), quality=85):
    """
    Converts an image from a local file path to a Base64-encoded string with optimized size.

    Args:
        image_path (str): The path to the image file.
        max_size (tuple): The maximum width and height of the resized image.
        quality (int): The compression quality (1-100, higher means better quality but bigger size).

    Returns:
        str: Base64-encoded representation of the optimized image.
    """
    try:
        with Image.open(image_path) as img:
            # Convert to RGB (avoid issues with PNG transparency)
            img = img.convert("RGB")

            # Resize while maintaining aspect ratio
            img.thumbnail(max_size, Image.LANCZOS)

            # Save to buffer with compression
            buffer = BytesIO()
            img.save(
                buffer, format="JPEG", quality=quality
            )  # Save as JPEG to reduce size
            return base64.b64encode(buffer.getvalue()).decode("utf-8")
    except Exception as e:
        print(f"❌ Error encoding image {image_path}: {e}")
        return None

@app.get("/predict")
def describe_image_with_qwen2_vl(image_url: str = Query(...), prompt: str = Query(...)):
    """
    Generates a description for an image using the Qwen-2-VL model.

    Args:
        image_url (str): The URL of the image to describe.
        prompt (str): The text prompt to guide the model's response.

    Returns:
        str: The generated description of the image.
    """

    image = encode_image(image_url)


    # Create the input message structure
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image}"},
                {"type": "text", "text": prompt},
            ],
        }
    ]

    # Prepare inputs for the model
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    ).to("cuda:0")

    # Generate the output
    generated_ids = model.generate(**inputs, max_new_tokens=2056)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :]
        for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )

    return {"response": output_text[0] if output_text else "No description generated."}

# @app.get("/predict")
# def predict(image_url: str = Query(...), prompt: str = Query(...)):

#     image = encode_image(image_url)

#     messages = [
#         {
#             "role": "system",
#             "content": "You are a helpful assistant with vision abilities.",
#         },
#         {
#             "role": "user",
#             "content": [
#                 {"type": "image", "image": f"data:image;base64,{image}"},
#                 {"type": "text", "text": prompt},
#             ],
#         },
#     ]
#     text = processor.apply_chat_template(
#         messages, tokenize=False, add_generation_prompt=True
#     )
#     image_inputs, video_inputs = process_vision_info(messages)
#     inputs = processor(
#         text=[text],
#         images=image_inputs,
#         videos=video_inputs,
#         padding=True,
#         return_tensors="pt",
#     ).to(model.device)
#     with torch.no_grad():
#         generated_ids = model.generate(**inputs, max_new_tokens=128)
#     generated_ids_trimmed = [
#         out_ids[len(in_ids) :]
#         for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
#     ]
#     output_texts = processor.batch_decode(
#         generated_ids_trimmed,
#         skip_special_tokens=True,
#         clean_up_tokenization_spaces=False,
#     )
#     return {"response": output_texts[0]}