Spaces:
Runtime error
Runtime error
| # Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py | |
| # Convert unipc for flow matching | |
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import ( | |
| KarrasDiffusionSchedulers, | |
| SchedulerMixin, | |
| SchedulerOutput, | |
| ) | |
| from diffusers.utils import deprecate, is_scipy_available | |
| if is_scipy_available(): | |
| import scipy.stats | |
| class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| solver_order (`int`, default `2`): | |
| The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1` | |
| due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for | |
| unconditional sampling. | |
| prediction_type (`str`, defaults to "flow_prediction"): | |
| Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts | |
| the flow of the diffusion process. | |
| thresholding (`bool`, defaults to `False`): | |
| Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such | |
| as Stable Diffusion. | |
| dynamic_thresholding_ratio (`float`, defaults to 0.995): | |
| The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | |
| sample_max_value (`float`, defaults to 1.0): | |
| The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`. | |
| predict_x0 (`bool`, defaults to `True`): | |
| Whether to use the updating algorithm on the predicted x0. | |
| solver_type (`str`, default `bh2`): | |
| Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2` | |
| otherwise. | |
| lower_order_final (`bool`, default `True`): | |
| Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can | |
| stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. | |
| disable_corrector (`list`, default `[]`): | |
| Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)` | |
| and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is | |
| usually disabled during the first few steps. | |
| solver_p (`SchedulerMixin`, default `None`): | |
| Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`. | |
| use_karras_sigmas (`bool`, *optional*, defaults to `False`): | |
| Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, | |
| the sigmas are determined according to a sequence of noise levels {σi}. | |
| use_exponential_sigmas (`bool`, *optional*, defaults to `False`): | |
| Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. | |
| timestep_spacing (`str`, defaults to `"linspace"`): | |
| The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
| steps_offset (`int`, defaults to 0): | |
| An offset added to the inference steps, as required by some model families. | |
| final_sigmas_type (`str`, defaults to `"zero"`): | |
| The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final | |
| sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| solver_order: int = 2, | |
| prediction_type: str = "flow_prediction", | |
| shift: Optional[float] = 1.0, | |
| use_dynamic_shifting=False, | |
| thresholding: bool = False, | |
| dynamic_thresholding_ratio: float = 0.995, | |
| sample_max_value: float = 1.0, | |
| predict_x0: bool = True, | |
| solver_type: str = "bh2", | |
| lower_order_final: bool = True, | |
| disable_corrector: List[int] = [], | |
| solver_p: SchedulerMixin = None, | |
| timestep_spacing: str = "linspace", | |
| steps_offset: int = 0, | |
| final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" | |
| ): | |
| if solver_type not in ["bh1", "bh2"]: | |
| if solver_type in ["midpoint", "heun", "logrho"]: | |
| self.register_to_config(solver_type="bh2") | |
| else: | |
| raise NotImplementedError( | |
| f"{solver_type} is not implemented for {self.__class__}") | |
| self.predict_x0 = predict_x0 | |
| # setable values | |
| self.num_inference_steps = None | |
| alphas = np.linspace(1, 1 / num_train_timesteps, | |
| num_train_timesteps)[::-1].copy() | |
| sigmas = 1.0 - alphas | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) | |
| if not use_dynamic_shifting: | |
| # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution | |
| sigmas = shift * sigmas / (1 + | |
| (shift - 1) * sigmas) # pyright: ignore | |
| self.sigmas = sigmas | |
| self.timesteps = sigmas * num_train_timesteps | |
| self.model_outputs = [None] * solver_order | |
| self.timestep_list = [None] * solver_order | |
| self.lower_order_nums = 0 | |
| self.disable_corrector = disable_corrector | |
| self.solver_p = solver_p | |
| self.last_sample = None | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to( | |
| "cpu") # to avoid too much CPU/GPU communication | |
| self.sigma_min = self.sigmas[-1].item() | |
| self.sigma_max = self.sigmas[0].item() | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| # Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: Union[int, None] = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[Union[float, None]] = None, | |
| shift: Optional[Union[float, None]] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| Total number of the spacing of the time steps. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if self.config.use_dynamic_shifting and mu is None: | |
| raise ValueError( | |
| " you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`" | |
| ) | |
| if sigmas is None: | |
| sigmas = np.linspace(self.sigma_max, self.sigma_min, | |
| num_inference_steps + | |
| 1).copy()[:-1] # pyright: ignore | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore | |
| else: | |
| if shift is None: | |
| shift = self.config.shift | |
| sigmas = shift * sigmas / (1 + | |
| (shift - 1) * sigmas) # pyright: ignore | |
| if self.config.final_sigmas_type == "sigma_min": | |
| sigma_last = ((1 - self.alphas_cumprod[0]) / | |
| self.alphas_cumprod[0])**0.5 | |
| elif self.config.final_sigmas_type == "zero": | |
| sigma_last = 0 | |
| else: | |
| raise ValueError( | |
| f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" | |
| ) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| sigmas = np.concatenate([sigmas, [sigma_last] | |
| ]).astype(np.float32) # pyright: ignore | |
| self.sigmas = torch.from_numpy(sigmas) | |
| self.timesteps = torch.from_numpy(timesteps).to( | |
| device=device, dtype=torch.int64) | |
| self.num_inference_steps = len(timesteps) | |
| self.model_outputs = [ | |
| None, | |
| ] * self.config.solver_order | |
| self.lower_order_nums = 0 | |
| self.last_sample = None | |
| if self.solver_p: | |
| self.solver_p.set_timesteps(self.num_inference_steps, device=device) | |
| # add an index counter for schedulers that allow duplicated timesteps | |
| self._step_index = None | |
| self._begin_index = None | |
| self.sigmas = self.sigmas.to( | |
| "cpu") # to avoid too much CPU/GPU communication | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample | |
| def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: | |
| """ | |
| "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
| prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
| s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
| pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
| photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
| https://arxiv.org/abs/2205.11487 | |
| """ | |
| dtype = sample.dtype | |
| batch_size, channels, *remaining_dims = sample.shape | |
| if dtype not in (torch.float32, torch.float64): | |
| sample = sample.float( | |
| ) # upcast for quantile calculation, and clamp not implemented for cpu half | |
| # Flatten sample for doing quantile calculation along each image | |
| sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) | |
| abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
| s = torch.quantile( | |
| abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
| s = torch.clamp( | |
| s, min=1, max=self.config.sample_max_value | |
| ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
| s = s.unsqueeze( | |
| 1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
| sample = torch.clamp( | |
| sample, -s, s | |
| ) / s # "we threshold xt0 to the range [-s, s] and then divide by s" | |
| sample = sample.reshape(batch_size, channels, *remaining_dims) | |
| sample = sample.to(dtype) | |
| return sample | |
| # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t | |
| def _sigma_to_t(self, sigma): | |
| return sigma * self.config.num_train_timesteps | |
| def _sigma_to_alpha_sigma_t(self, sigma): | |
| return 1 - sigma, sigma | |
| # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps | |
| def time_shift(self, mu: float, sigma: float, t: torch.Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma) | |
| def convert_model_output( | |
| self, | |
| model_output: torch.Tensor, | |
| *args, | |
| sample: torch.Tensor = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| r""" | |
| Convert the model output to the corresponding type the UniPC algorithm needs. | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from the learned diffusion model. | |
| timestep (`int`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The converted model output. | |
| """ | |
| timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) | |
| if sample is None: | |
| if len(args) > 1: | |
| sample = args[1] | |
| else: | |
| raise ValueError( | |
| "missing `sample` as a required keyward argument") | |
| if timestep is not None: | |
| deprecate( | |
| "timesteps", | |
| "1.0.0", | |
| "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| sigma = self.sigmas[self.step_index] | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
| if self.predict_x0: | |
| if self.config.prediction_type == "flow_prediction": | |
| sigma_t = self.sigmas[self.step_index] | |
| x0_pred = sample - sigma_t * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," | |
| " `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." | |
| ) | |
| if self.config.thresholding: | |
| x0_pred = self._threshold_sample(x0_pred) | |
| return x0_pred | |
| else: | |
| if self.config.prediction_type == "flow_prediction": | |
| sigma_t = self.sigmas[self.step_index] | |
| epsilon = sample - (1 - sigma_t) * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," | |
| " `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler." | |
| ) | |
| if self.config.thresholding: | |
| sigma_t = self.sigmas[self.step_index] | |
| x0_pred = sample - sigma_t * model_output | |
| x0_pred = self._threshold_sample(x0_pred) | |
| epsilon = model_output + x0_pred | |
| return epsilon | |
| def multistep_uni_p_bh_update( | |
| self, | |
| model_output: torch.Tensor, | |
| *args, | |
| sample: torch.Tensor = None, | |
| order: int = None, # pyright: ignore | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified. | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from the learned diffusion model at the current timestep. | |
| prev_timestep (`int`): | |
| The previous discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| order (`int`): | |
| The order of UniP at this timestep (corresponds to the *p* in UniPC-p). | |
| Returns: | |
| `torch.Tensor`: | |
| The sample tensor at the previous timestep. | |
| """ | |
| prev_timestep = args[0] if len(args) > 0 else kwargs.pop( | |
| "prev_timestep", None) | |
| if sample is None: | |
| if len(args) > 1: | |
| sample = args[1] | |
| else: | |
| raise ValueError( | |
| " missing `sample` as a required keyward argument") | |
| if order is None: | |
| if len(args) > 2: | |
| order = args[2] | |
| else: | |
| raise ValueError( | |
| " missing `order` as a required keyward argument") | |
| if prev_timestep is not None: | |
| deprecate( | |
| "prev_timestep", | |
| "1.0.0", | |
| "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| model_output_list = self.model_outputs | |
| s0 = self.timestep_list[-1] | |
| m0 = model_output_list[-1] | |
| x = sample | |
| if self.solver_p: | |
| x_t = self.solver_p.step(model_output, s0, x).prev_sample | |
| return x_t | |
| sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[ | |
| self.step_index] # pyright: ignore | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
| h = lambda_t - lambda_s0 | |
| device = sample.device | |
| rks = [] | |
| D1s = [] | |
| for i in range(1, order): | |
| si = self.step_index - i # pyright: ignore | |
| mi = model_output_list[-(i + 1)] | |
| alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) | |
| lambda_si = torch.log(alpha_si) - torch.log(sigma_si) | |
| rk = (lambda_si - lambda_s0) / h | |
| rks.append(rk) | |
| D1s.append((mi - m0) / rk) # pyright: ignore | |
| rks.append(1.0) | |
| rks = torch.tensor(rks, device=device) | |
| R = [] | |
| b = [] | |
| hh = -h if self.predict_x0 else h | |
| h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
| h_phi_k = h_phi_1 / hh - 1 | |
| factorial_i = 1 | |
| if self.config.solver_type == "bh1": | |
| B_h = hh | |
| elif self.config.solver_type == "bh2": | |
| B_h = torch.expm1(hh) | |
| else: | |
| raise NotImplementedError() | |
| for i in range(1, order + 1): | |
| R.append(torch.pow(rks, i - 1)) | |
| b.append(h_phi_k * factorial_i / B_h) | |
| factorial_i *= i + 1 | |
| h_phi_k = h_phi_k / hh - 1 / factorial_i | |
| R = torch.stack(R) | |
| b = torch.tensor(b, device=device) | |
| if len(D1s) > 0: | |
| D1s = torch.stack(D1s, dim=1) # (B, K) | |
| # for order 2, we use a simplified version | |
| if order == 2: | |
| rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device) | |
| else: | |
| rhos_p = torch.linalg.solve(R[:-1, :-1], | |
| b[:-1]).to(device).to(x.dtype) | |
| else: | |
| D1s = None | |
| if self.predict_x0: | |
| x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| pred_res = torch.einsum("k,bkc...->bc...", rhos_p, | |
| D1s) # pyright: ignore | |
| else: | |
| pred_res = 0 | |
| x_t = x_t_ - alpha_t * B_h * pred_res | |
| else: | |
| x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| pred_res = torch.einsum("k,bkc...->bc...", rhos_p, | |
| D1s) # pyright: ignore | |
| else: | |
| pred_res = 0 | |
| x_t = x_t_ - sigma_t * B_h * pred_res | |
| x_t = x_t.to(x.dtype) | |
| return x_t | |
| def multistep_uni_c_bh_update( | |
| self, | |
| this_model_output: torch.Tensor, | |
| *args, | |
| last_sample: torch.Tensor = None, | |
| this_sample: torch.Tensor = None, | |
| order: int = None, # pyright: ignore | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the UniC (B(h) version). | |
| Args: | |
| this_model_output (`torch.Tensor`): | |
| The model outputs at `x_t`. | |
| this_timestep (`int`): | |
| The current timestep `t`. | |
| last_sample (`torch.Tensor`): | |
| The generated sample before the last predictor `x_{t-1}`. | |
| this_sample (`torch.Tensor`): | |
| The generated sample after the last predictor `x_{t}`. | |
| order (`int`): | |
| The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`. | |
| Returns: | |
| `torch.Tensor`: | |
| The corrected sample tensor at the current timestep. | |
| """ | |
| this_timestep = args[0] if len(args) > 0 else kwargs.pop( | |
| "this_timestep", None) | |
| if last_sample is None: | |
| if len(args) > 1: | |
| last_sample = args[1] | |
| else: | |
| raise ValueError( | |
| " missing`last_sample` as a required keyward argument") | |
| if this_sample is None: | |
| if len(args) > 2: | |
| this_sample = args[2] | |
| else: | |
| raise ValueError( | |
| " missing`this_sample` as a required keyward argument") | |
| if order is None: | |
| if len(args) > 3: | |
| order = args[3] | |
| else: | |
| raise ValueError( | |
| " missing`order` as a required keyward argument") | |
| if this_timestep is not None: | |
| deprecate( | |
| "this_timestep", | |
| "1.0.0", | |
| "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| model_output_list = self.model_outputs | |
| m0 = model_output_list[-1] | |
| x = last_sample | |
| x_t = this_sample | |
| model_t = this_model_output | |
| sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[ | |
| self.step_index - 1] # pyright: ignore | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
| h = lambda_t - lambda_s0 | |
| device = this_sample.device | |
| rks = [] | |
| D1s = [] | |
| for i in range(1, order): | |
| si = self.step_index - (i + 1) # pyright: ignore | |
| mi = model_output_list[-(i + 1)] | |
| alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) | |
| lambda_si = torch.log(alpha_si) - torch.log(sigma_si) | |
| rk = (lambda_si - lambda_s0) / h | |
| rks.append(rk) | |
| D1s.append((mi - m0) / rk) # pyright: ignore | |
| rks.append(1.0) | |
| rks = torch.tensor(rks, device=device) | |
| R = [] | |
| b = [] | |
| hh = -h if self.predict_x0 else h | |
| h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1 | |
| h_phi_k = h_phi_1 / hh - 1 | |
| factorial_i = 1 | |
| if self.config.solver_type == "bh1": | |
| B_h = hh | |
| elif self.config.solver_type == "bh2": | |
| B_h = torch.expm1(hh) | |
| else: | |
| raise NotImplementedError() | |
| for i in range(1, order + 1): | |
| R.append(torch.pow(rks, i - 1)) | |
| b.append(h_phi_k * factorial_i / B_h) | |
| factorial_i *= i + 1 | |
| h_phi_k = h_phi_k / hh - 1 / factorial_i | |
| R = torch.stack(R) | |
| b = torch.tensor(b, device=device) | |
| if len(D1s) > 0: | |
| D1s = torch.stack(D1s, dim=1) | |
| else: | |
| D1s = None | |
| # for order 1, we use a simplified version | |
| if order == 1: | |
| rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device) | |
| else: | |
| rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype) | |
| if self.predict_x0: | |
| x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) | |
| else: | |
| corr_res = 0 | |
| D1_t = model_t - m0 | |
| x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t) | |
| else: | |
| x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0 | |
| if D1s is not None: | |
| corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s) | |
| else: | |
| corr_res = 0 | |
| D1_t = model_t - m0 | |
| x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t) | |
| x_t = x_t.to(x.dtype) | |
| return x_t | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index | |
| def _init_step_index(self, timestep): | |
| """ | |
| Initialize the step_index counter for the scheduler. | |
| """ | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def step(self, | |
| model_output: torch.Tensor, | |
| timestep: Union[int, torch.Tensor], | |
| sample: torch.Tensor, | |
| return_dict: bool = True, | |
| generator=None) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with | |
| the multistep UniPC. | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`int`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| use_corrector = ( | |
| self.step_index > 0 and | |
| self.step_index - 1 not in self.disable_corrector and | |
| self.last_sample is not None # pyright: ignore | |
| ) | |
| model_output_convert = self.convert_model_output( | |
| model_output, sample=sample) | |
| if use_corrector: | |
| sample = self.multistep_uni_c_bh_update( | |
| this_model_output=model_output_convert, | |
| last_sample=self.last_sample, | |
| this_sample=sample, | |
| order=self.this_order, | |
| ) | |
| for i in range(self.config.solver_order - 1): | |
| self.model_outputs[i] = self.model_outputs[i + 1] | |
| self.timestep_list[i] = self.timestep_list[i + 1] | |
| self.model_outputs[-1] = model_output_convert | |
| self.timestep_list[-1] = timestep # pyright: ignore | |
| if self.config.lower_order_final: | |
| this_order = min(self.config.solver_order, | |
| len(self.timesteps) - | |
| self.step_index) # pyright: ignore | |
| else: | |
| this_order = self.config.solver_order | |
| self.this_order = min(this_order, | |
| self.lower_order_nums + 1) # warmup for multistep | |
| assert self.this_order > 0 | |
| self.last_sample = sample | |
| prev_sample = self.multistep_uni_p_bh_update( | |
| model_output=model_output, # pass the original non-converted model output, in case solver-p is used | |
| sample=sample, | |
| order=self.this_order, | |
| ) | |
| if self.lower_order_nums < self.config.solver_order: | |
| self.lower_order_nums += 1 | |
| # upon completion increase step index by one | |
| self._step_index += 1 # pyright: ignore | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| def scale_model_input(self, sample: torch.Tensor, *args, | |
| **kwargs) -> torch.Tensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The input sample. | |
| Returns: | |
| `torch.Tensor`: | |
| A scaled input sample. | |
| """ | |
| return sample | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.Tensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| sigmas = self.sigmas.to( | |
| device=original_samples.device, dtype=original_samples.dtype) | |
| if original_samples.device.type == "mps" and torch.is_floating_point( | |
| timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to( | |
| original_samples.device, dtype=torch.float32) | |
| timesteps = timesteps.to( | |
| original_samples.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index | |
| if self.begin_index is None: | |
| step_indices = [ | |
| self.index_for_timestep(t, schedule_timesteps) | |
| for t in timesteps | |
| ] | |
| elif self.step_index is not None: | |
| # add_noise is called after first denoising step (for inpainting) | |
| step_indices = [self.step_index] * timesteps.shape[0] | |
| else: | |
| # add noise is called before first denoising step to create initial latent(img2img) | |
| step_indices = [self.begin_index] * timesteps.shape[0] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
| noisy_samples = alpha_t * original_samples + sigma_t * noise | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |