Spaces:
Runtime error
Runtime error
| # Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py | |
| # Convert dpm solver for flow matching | |
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import inspect | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import ( | |
| KarrasDiffusionSchedulers, | |
| SchedulerMixin, | |
| SchedulerOutput, | |
| ) | |
| from diffusers.utils import deprecate, is_scipy_available | |
| from diffusers.utils.torch_utils import randn_tensor | |
| if is_scipy_available(): | |
| pass | |
| def get_sampling_sigmas(sampling_steps, shift): | |
| sigma = np.linspace(1, 0, sampling_steps + 1)[:sampling_steps] | |
| sigma = (shift * sigma / (1 + (shift - 1) * sigma)) | |
| return sigma | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps=None, | |
| device=None, | |
| timesteps=None, | |
| sigmas=None, | |
| **kwargs, | |
| ): | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError( | |
| "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" | |
| ) | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class FlowDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| `FlowDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. This determines the resolution of the diffusion process. | |
| solver_order (`int`, defaults to 2): | |
| The DPMSolver order which can be `1`, `2`, or `3`. It is recommended to use `solver_order=2` for guided | |
| sampling, and `solver_order=3` for unconditional sampling. This affects the number of model outputs stored | |
| and used in multistep updates. | |
| prediction_type (`str`, defaults to "flow_prediction"): | |
| Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts | |
| the flow of the diffusion process. | |
| shift (`float`, *optional*, defaults to 1.0): | |
| A factor used to adjust the sigmas in the noise schedule. It modifies the step sizes during the sampling | |
| process. | |
| use_dynamic_shifting (`bool`, defaults to `False`): | |
| Whether to apply dynamic shifting to the timesteps based on image resolution. If `True`, the shifting is | |
| applied on the fly. | |
| thresholding (`bool`, defaults to `False`): | |
| Whether to use the "dynamic thresholding" method. This method adjusts the predicted sample to prevent | |
| saturation and improve photorealism. | |
| dynamic_thresholding_ratio (`float`, defaults to 0.995): | |
| The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | |
| sample_max_value (`float`, defaults to 1.0): | |
| The threshold value for dynamic thresholding. Valid only when `thresholding=True` and | |
| `algorithm_type="dpmsolver++"`. | |
| algorithm_type (`str`, defaults to `dpmsolver++`): | |
| Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The | |
| `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) | |
| paper, and the `dpmsolver++` type implements the algorithms in the | |
| [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or | |
| `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion. | |
| solver_type (`str`, defaults to `midpoint`): | |
| Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the | |
| sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. | |
| lower_order_final (`bool`, defaults to `True`): | |
| Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can | |
| stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. | |
| euler_at_final (`bool`, defaults to `False`): | |
| Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail | |
| richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference | |
| steps, but sometimes may result in blurring. | |
| final_sigmas_type (`str`, *optional*, defaults to "zero"): | |
| The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final | |
| sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. | |
| lambda_min_clipped (`float`, defaults to `-inf`): | |
| Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the | |
| cosine (`squaredcos_cap_v2`) noise schedule. | |
| variance_type (`str`, *optional*): | |
| Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output | |
| contains the predicted Gaussian variance. | |
| """ | |
| _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| solver_order: int = 2, | |
| prediction_type: str = "flow_prediction", | |
| shift: Optional[float] = 1.0, | |
| use_dynamic_shifting=False, | |
| thresholding: bool = False, | |
| dynamic_thresholding_ratio: float = 0.995, | |
| sample_max_value: float = 1.0, | |
| algorithm_type: str = "dpmsolver++", | |
| solver_type: str = "midpoint", | |
| lower_order_final: bool = True, | |
| euler_at_final: bool = False, | |
| final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" | |
| lambda_min_clipped: float = -float("inf"), | |
| variance_type: Optional[str] = None, | |
| invert_sigmas: bool = False, | |
| ): | |
| if algorithm_type in ["dpmsolver", "sde-dpmsolver"]: | |
| deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead" | |
| deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", | |
| deprecation_message) | |
| # settings for DPM-Solver | |
| if algorithm_type not in [ | |
| "dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++" | |
| ]: | |
| if algorithm_type == "deis": | |
| self.register_to_config(algorithm_type="dpmsolver++") | |
| else: | |
| raise NotImplementedError( | |
| f"{algorithm_type} is not implemented for {self.__class__}") | |
| if solver_type not in ["midpoint", "heun"]: | |
| if solver_type in ["logrho", "bh1", "bh2"]: | |
| self.register_to_config(solver_type="midpoint") | |
| else: | |
| raise NotImplementedError( | |
| f"{solver_type} is not implemented for {self.__class__}") | |
| if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++" | |
| ] and final_sigmas_type == "zero": | |
| raise ValueError( | |
| f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead." | |
| ) | |
| # setable values | |
| self.num_inference_steps = None | |
| alphas = np.linspace(1, 1 / num_train_timesteps, | |
| num_train_timesteps)[::-1].copy() | |
| sigmas = 1.0 - alphas | |
| sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) | |
| if not use_dynamic_shifting: | |
| # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution | |
| sigmas = shift * sigmas / (1 + | |
| (shift - 1) * sigmas) # pyright: ignore | |
| self.sigmas = sigmas | |
| self.timesteps = sigmas * num_train_timesteps | |
| self.model_outputs = [None] * solver_order | |
| self.lower_order_nums = 0 | |
| self._step_index = None | |
| self._begin_index = None | |
| # self.sigmas = self.sigmas.to( | |
| # "cpu") # to avoid too much CPU/GPU communication | |
| self.sigma_min = self.sigmas[-1].item() | |
| self.sigma_max = self.sigmas[0].item() | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increase 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| # Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: Union[int, None] = None, | |
| device: Union[str, torch.device] = None, | |
| sigmas: Optional[List[float]] = None, | |
| mu: Optional[Union[float, None]] = None, | |
| shift: Optional[Union[float, None]] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| Total number of the spacing of the time steps. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| if self.config.use_dynamic_shifting and mu is None: | |
| raise ValueError( | |
| " you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`" | |
| ) | |
| if sigmas is None: | |
| sigmas = np.linspace(self.sigma_max, self.sigma_min, | |
| num_inference_steps + | |
| 1).copy()[:-1] # pyright: ignore | |
| if self.config.use_dynamic_shifting: | |
| sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore | |
| else: | |
| if shift is None: | |
| shift = self.config.shift | |
| sigmas = shift * sigmas / (1 + | |
| (shift - 1) * sigmas) # pyright: ignore | |
| if self.config.final_sigmas_type == "sigma_min": | |
| sigma_last = ((1 - self.alphas_cumprod[0]) / | |
| self.alphas_cumprod[0])**0.5 | |
| elif self.config.final_sigmas_type == "zero": | |
| sigma_last = 0 | |
| else: | |
| raise ValueError( | |
| f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" | |
| ) | |
| timesteps = sigmas * self.config.num_train_timesteps | |
| sigmas = np.concatenate([sigmas, [sigma_last] | |
| ]).astype(np.float32) # pyright: ignore | |
| self.sigmas = torch.from_numpy(sigmas) | |
| self.timesteps = torch.from_numpy(timesteps).to( | |
| device=device, dtype=torch.int64) | |
| self.num_inference_steps = len(timesteps) | |
| self.model_outputs = [ | |
| None, | |
| ] * self.config.solver_order | |
| self.lower_order_nums = 0 | |
| self._step_index = None | |
| self._begin_index = None | |
| # self.sigmas = self.sigmas.to( | |
| # "cpu") # to avoid too much CPU/GPU communication | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample | |
| def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: | |
| """ | |
| "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
| prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
| s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
| pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
| photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
| https://arxiv.org/abs/2205.11487 | |
| """ | |
| dtype = sample.dtype | |
| batch_size, channels, *remaining_dims = sample.shape | |
| if dtype not in (torch.float32, torch.float64): | |
| sample = sample.float( | |
| ) # upcast for quantile calculation, and clamp not implemented for cpu half | |
| # Flatten sample for doing quantile calculation along each image | |
| sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) | |
| abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
| s = torch.quantile( | |
| abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
| s = torch.clamp( | |
| s, min=1, max=self.config.sample_max_value | |
| ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
| s = s.unsqueeze( | |
| 1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
| sample = torch.clamp( | |
| sample, -s, s | |
| ) / s # "we threshold xt0 to the range [-s, s] and then divide by s" | |
| sample = sample.reshape(batch_size, channels, *remaining_dims) | |
| sample = sample.to(dtype) | |
| return sample | |
| # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t | |
| def _sigma_to_t(self, sigma): | |
| return sigma * self.config.num_train_timesteps | |
| def _sigma_to_alpha_sigma_t(self, sigma): | |
| return 1 - sigma, sigma | |
| # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps | |
| def time_shift(self, mu: float, sigma: float, t: torch.Tensor): | |
| return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma) | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output | |
| def convert_model_output( | |
| self, | |
| model_output: torch.Tensor, | |
| *args, | |
| sample: torch.Tensor = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is | |
| designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an | |
| integral of the data prediction model. | |
| <Tip> | |
| The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise | |
| prediction and data prediction models. | |
| </Tip> | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from the learned diffusion model. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The converted model output. | |
| """ | |
| timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) | |
| if sample is None: | |
| if len(args) > 1: | |
| sample = args[1] | |
| else: | |
| raise ValueError( | |
| "missing `sample` as a required keyward argument") | |
| if timestep is not None: | |
| deprecate( | |
| "timesteps", | |
| "1.0.0", | |
| "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| # DPM-Solver++ needs to solve an integral of the data prediction model. | |
| if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: | |
| if self.config.prediction_type == "flow_prediction": | |
| sigma_t = self.sigmas[self.step_index] | |
| x0_pred = sample - sigma_t * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," | |
| " `v_prediction`, or `flow_prediction` for the FlowDPMSolverMultistepScheduler." | |
| ) | |
| if self.config.thresholding: | |
| x0_pred = self._threshold_sample(x0_pred) | |
| return x0_pred | |
| # DPM-Solver needs to solve an integral of the noise prediction model. | |
| elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: | |
| if self.config.prediction_type == "flow_prediction": | |
| sigma_t = self.sigmas[self.step_index] | |
| epsilon = sample - (1 - sigma_t) * model_output | |
| else: | |
| raise ValueError( | |
| f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`," | |
| " `v_prediction` or `flow_prediction` for the FlowDPMSolverMultistepScheduler." | |
| ) | |
| if self.config.thresholding: | |
| sigma_t = self.sigmas[self.step_index] | |
| x0_pred = sample - sigma_t * model_output | |
| x0_pred = self._threshold_sample(x0_pred) | |
| epsilon = model_output + x0_pred | |
| return epsilon | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update | |
| def dpm_solver_first_order_update( | |
| self, | |
| model_output: torch.Tensor, | |
| *args, | |
| sample: torch.Tensor = None, | |
| noise: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the first-order DPMSolver (equivalent to DDIM). | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from the learned diffusion model. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The sample tensor at the previous timestep. | |
| """ | |
| timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) | |
| prev_timestep = args[1] if len(args) > 1 else kwargs.pop( | |
| "prev_timestep", None) | |
| if sample is None: | |
| if len(args) > 2: | |
| sample = args[2] | |
| else: | |
| raise ValueError( | |
| " missing `sample` as a required keyward argument") | |
| if timestep is not None: | |
| deprecate( | |
| "timesteps", | |
| "1.0.0", | |
| "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| if prev_timestep is not None: | |
| deprecate( | |
| "prev_timestep", | |
| "1.0.0", | |
| "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[ | |
| self.step_index] # pyright: ignore | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s = torch.log(alpha_s) - torch.log(sigma_s) | |
| h = lambda_t - lambda_s | |
| if self.config.algorithm_type == "dpmsolver++": | |
| x_t = (sigma_t / | |
| sigma_s) * sample - (alpha_t * | |
| (torch.exp(-h) - 1.0)) * model_output | |
| elif self.config.algorithm_type == "dpmsolver": | |
| x_t = (alpha_t / | |
| alpha_s) * sample - (sigma_t * | |
| (torch.exp(h) - 1.0)) * model_output | |
| elif self.config.algorithm_type == "sde-dpmsolver++": | |
| assert noise is not None | |
| x_t = ((sigma_t / sigma_s * torch.exp(-h)) * sample + | |
| (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output + | |
| sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise) | |
| elif self.config.algorithm_type == "sde-dpmsolver": | |
| assert noise is not None | |
| x_t = ((alpha_t / alpha_s) * sample - 2.0 * | |
| (sigma_t * (torch.exp(h) - 1.0)) * model_output + | |
| sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise) | |
| return x_t # pyright: ignore | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update | |
| def multistep_dpm_solver_second_order_update( | |
| self, | |
| model_output_list: List[torch.Tensor], | |
| *args, | |
| sample: torch.Tensor = None, | |
| noise: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the second-order multistep DPMSolver. | |
| Args: | |
| model_output_list (`List[torch.Tensor]`): | |
| The direct outputs from learned diffusion model at current and latter timesteps. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The sample tensor at the previous timestep. | |
| """ | |
| timestep_list = args[0] if len(args) > 0 else kwargs.pop( | |
| "timestep_list", None) | |
| prev_timestep = args[1] if len(args) > 1 else kwargs.pop( | |
| "prev_timestep", None) | |
| if sample is None: | |
| if len(args) > 2: | |
| sample = args[2] | |
| else: | |
| raise ValueError( | |
| " missing `sample` as a required keyward argument") | |
| if timestep_list is not None: | |
| deprecate( | |
| "timestep_list", | |
| "1.0.0", | |
| "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| if prev_timestep is not None: | |
| deprecate( | |
| "prev_timestep", | |
| "1.0.0", | |
| "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| sigma_t, sigma_s0, sigma_s1 = ( | |
| self.sigmas[self.step_index + 1], # pyright: ignore | |
| self.sigmas[self.step_index], | |
| self.sigmas[self.step_index - 1], # pyright: ignore | |
| ) | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
| alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
| lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
| m0, m1 = model_output_list[-1], model_output_list[-2] | |
| h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
| r0 = h_0 / h | |
| D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
| if self.config.algorithm_type == "dpmsolver++": | |
| # See https://arxiv.org/abs/2211.01095 for detailed derivations | |
| if self.config.solver_type == "midpoint": | |
| x_t = ((sigma_t / sigma_s0) * sample - | |
| (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 * | |
| (alpha_t * (torch.exp(-h) - 1.0)) * D1) | |
| elif self.config.solver_type == "heun": | |
| x_t = ((sigma_t / sigma_s0) * sample - | |
| (alpha_t * (torch.exp(-h) - 1.0)) * D0 + | |
| (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1) | |
| elif self.config.algorithm_type == "dpmsolver": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| if self.config.solver_type == "midpoint": | |
| x_t = ((alpha_t / alpha_s0) * sample - | |
| (sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 * | |
| (sigma_t * (torch.exp(h) - 1.0)) * D1) | |
| elif self.config.solver_type == "heun": | |
| x_t = ((alpha_t / alpha_s0) * sample - | |
| (sigma_t * (torch.exp(h) - 1.0)) * D0 - | |
| (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1) | |
| elif self.config.algorithm_type == "sde-dpmsolver++": | |
| assert noise is not None | |
| if self.config.solver_type == "midpoint": | |
| x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample + | |
| (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 * | |
| (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + | |
| sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise) | |
| elif self.config.solver_type == "heun": | |
| x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample + | |
| (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + | |
| (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / | |
| (-2.0 * h) + 1.0)) * D1 + | |
| sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise) | |
| elif self.config.algorithm_type == "sde-dpmsolver": | |
| assert noise is not None | |
| if self.config.solver_type == "midpoint": | |
| x_t = ((alpha_t / alpha_s0) * sample - 2.0 * | |
| (sigma_t * (torch.exp(h) - 1.0)) * D0 - | |
| (sigma_t * (torch.exp(h) - 1.0)) * D1 + | |
| sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise) | |
| elif self.config.solver_type == "heun": | |
| x_t = ((alpha_t / alpha_s0) * sample - 2.0 * | |
| (sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 * | |
| (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + | |
| sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise) | |
| return x_t # pyright: ignore | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update | |
| def multistep_dpm_solver_third_order_update( | |
| self, | |
| model_output_list: List[torch.Tensor], | |
| *args, | |
| sample: torch.Tensor = None, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| """ | |
| One step for the third-order multistep DPMSolver. | |
| Args: | |
| model_output_list (`List[torch.Tensor]`): | |
| The direct outputs from learned diffusion model at current and latter timesteps. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by diffusion process. | |
| Returns: | |
| `torch.Tensor`: | |
| The sample tensor at the previous timestep. | |
| """ | |
| timestep_list = args[0] if len(args) > 0 else kwargs.pop( | |
| "timestep_list", None) | |
| prev_timestep = args[1] if len(args) > 1 else kwargs.pop( | |
| "prev_timestep", None) | |
| if sample is None: | |
| if len(args) > 2: | |
| sample = args[2] | |
| else: | |
| raise ValueError( | |
| " missing`sample` as a required keyward argument") | |
| if timestep_list is not None: | |
| deprecate( | |
| "timestep_list", | |
| "1.0.0", | |
| "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| if prev_timestep is not None: | |
| deprecate( | |
| "prev_timestep", | |
| "1.0.0", | |
| "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", | |
| ) | |
| sigma_t, sigma_s0, sigma_s1, sigma_s2 = ( | |
| self.sigmas[self.step_index + 1], # pyright: ignore | |
| self.sigmas[self.step_index], | |
| self.sigmas[self.step_index - 1], # pyright: ignore | |
| self.sigmas[self.step_index - 2], # pyright: ignore | |
| ) | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
| alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
| alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) | |
| alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2) | |
| lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
| lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
| lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
| lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) | |
| m0, m1, m2 = model_output_list[-1], model_output_list[ | |
| -2], model_output_list[-3] | |
| h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 | |
| r0, r1 = h_0 / h, h_1 / h | |
| D0 = m0 | |
| D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) | |
| D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | |
| D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | |
| if self.config.algorithm_type == "dpmsolver++": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| x_t = ((sigma_t / sigma_s0) * sample - | |
| (alpha_t * (torch.exp(-h) - 1.0)) * D0 + | |
| (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 - | |
| (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2) | |
| elif self.config.algorithm_type == "dpmsolver": | |
| # See https://arxiv.org/abs/2206.00927 for detailed derivations | |
| x_t = ((alpha_t / alpha_s0) * sample - (sigma_t * | |
| (torch.exp(h) - 1.0)) * D0 - | |
| (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 - | |
| (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2) | |
| return x_t # pyright: ignore | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| def _init_step_index(self, timestep): | |
| """ | |
| Initialize the step_index counter for the scheduler. | |
| """ | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| # Modified from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.step | |
| def step( | |
| self, | |
| model_output: torch.Tensor, | |
| timestep: Union[int, torch.Tensor], | |
| sample: torch.Tensor, | |
| generator=None, | |
| variance_noise: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with | |
| the multistep DPMSolver. | |
| Args: | |
| model_output (`torch.Tensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`int`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.Tensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| variance_noise (`torch.Tensor`): | |
| Alternative to generating noise with `generator` by directly providing the noise for the variance | |
| itself. Useful for methods such as [`LEdits++`]. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # Improve numerical stability for small number of steps | |
| lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( | |
| self.config.euler_at_final or | |
| (self.config.lower_order_final and len(self.timesteps) < 15) or | |
| self.config.final_sigmas_type == "zero") | |
| lower_order_second = ((self.step_index == len(self.timesteps) - 2) and | |
| self.config.lower_order_final and | |
| len(self.timesteps) < 15) | |
| model_output = self.convert_model_output(model_output, sample=sample) | |
| for i in range(self.config.solver_order - 1): | |
| self.model_outputs[i] = self.model_outputs[i + 1] | |
| self.model_outputs[-1] = model_output | |
| # Upcast to avoid precision issues when computing prev_sample | |
| sample = sample.to(torch.float32) | |
| if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++" | |
| ] and variance_noise is None: | |
| noise = randn_tensor( | |
| model_output.shape, | |
| generator=generator, | |
| device=model_output.device, | |
| dtype=torch.float32) | |
| elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]: | |
| noise = variance_noise.to( | |
| device=model_output.device, | |
| dtype=torch.float32) # pyright: ignore | |
| else: | |
| noise = None | |
| if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: | |
| prev_sample = self.dpm_solver_first_order_update( | |
| model_output, sample=sample, noise=noise) | |
| elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: | |
| prev_sample = self.multistep_dpm_solver_second_order_update( | |
| self.model_outputs, sample=sample, noise=noise) | |
| else: | |
| prev_sample = self.multistep_dpm_solver_third_order_update( | |
| self.model_outputs, sample=sample) | |
| if self.lower_order_nums < self.config.solver_order: | |
| self.lower_order_nums += 1 | |
| # Cast sample back to expected dtype | |
| prev_sample = prev_sample.to(model_output.dtype) | |
| # upon completion increase step index by one | |
| self._step_index += 1 # pyright: ignore | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input | |
| def scale_model_input(self, sample: torch.Tensor, *args, | |
| **kwargs) -> torch.Tensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The input sample. | |
| Returns: | |
| `torch.Tensor`: | |
| A scaled input sample. | |
| """ | |
| return sample | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| timesteps: torch.IntTensor, | |
| ) -> torch.Tensor: | |
| # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
| sigmas = self.sigmas.to( | |
| device=original_samples.device, dtype=original_samples.dtype) | |
| if original_samples.device.type == "mps" and torch.is_floating_point( | |
| timesteps): | |
| # mps does not support float64 | |
| schedule_timesteps = self.timesteps.to( | |
| original_samples.device, dtype=torch.float32) | |
| timesteps = timesteps.to( | |
| original_samples.device, dtype=torch.float32) | |
| else: | |
| schedule_timesteps = self.timesteps.to(original_samples.device) | |
| timesteps = timesteps.to(original_samples.device) | |
| # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index | |
| if self.begin_index is None: | |
| step_indices = [ | |
| self.index_for_timestep(t, schedule_timesteps) | |
| for t in timesteps | |
| ] | |
| elif self.step_index is not None: | |
| # add_noise is called after first denoising step (for inpainting) | |
| step_indices = [self.step_index] * timesteps.shape[0] | |
| else: | |
| # add noise is called before first denoising step to create initial latent(img2img) | |
| step_indices = [self.begin_index] * timesteps.shape[0] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < len(original_samples.shape): | |
| sigma = sigma.unsqueeze(-1) | |
| alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) | |
| noisy_samples = alpha_t * original_samples + sigma_t * noise | |
| return noisy_samples | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |