Update app.py
Browse files
app.py
CHANGED
|
@@ -7,27 +7,24 @@
|
|
| 7 |
import copy
|
| 8 |
import os
|
| 9 |
from datetime import datetime
|
| 10 |
-
|
| 11 |
-
import gradio as gr
|
| 12 |
-
|
| 13 |
-
# Removed GPU-specific environment variable setting
|
| 14 |
-
# os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
|
| 15 |
-
|
| 16 |
import tempfile
|
| 17 |
|
| 18 |
import cv2
|
| 19 |
import matplotlib.pyplot as plt
|
| 20 |
import numpy as np
|
| 21 |
-
|
| 22 |
-
# import spaces # Removed spaces import
|
| 23 |
import torch
|
| 24 |
|
| 25 |
from moviepy.editor import ImageSequenceClip
|
| 26 |
from PIL import Image
|
| 27 |
from sam2.build_sam import build_sam2_video_predictor
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Description
|
| 30 |
-
title = "<center><strong><font size='8'>EdgeTAM<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
|
| 31 |
|
| 32 |
description_p = """# Instructions
|
| 33 |
<ol>
|
|
@@ -38,535 +35,314 @@ description_p = """# Instructions
|
|
| 38 |
</ol>
|
| 39 |
"""
|
| 40 |
|
| 41 |
-
# examples -
|
| 42 |
examples = [
|
| 43 |
["examples/01_dog.mp4"],
|
| 44 |
["examples/02_cups.mp4"],
|
| 45 |
["examples/03_blocks.mp4"],
|
| 46 |
["examples/04_coffee.mp4"],
|
| 47 |
["examples/05_default_juggle.mp4"],
|
| 48 |
-
["examples/01_breakdancer.mp4"],
|
| 49 |
-
["examples/02_hummingbird.mp4"],
|
| 50 |
-
["examples/03_skateboarder.mp4"],
|
| 51 |
-
["examples/04_octopus.mp4"],
|
| 52 |
-
["examples/05_landing_dog_soccer.mp4"],
|
| 53 |
-
["examples/06_pingpong.mp4"],
|
| 54 |
-
["examples/07_snowboarder.mp4"],
|
| 55 |
-
["examples/08_driving.mp4"],
|
| 56 |
-
["examples/09_birdcartoon.mp4"],
|
| 57 |
-
["examples/10_cloth_magic.mp4"],
|
| 58 |
-
["examples/11_polevault.mp4"],
|
| 59 |
-
["examples/12_hideandseek.mp4"],
|
| 60 |
-
["examples/13_butterfly.mp4"],
|
| 61 |
-
["examples/14_social_dog_training.mp4"],
|
| 62 |
-
["examples/15_cricket.mp4"],
|
| 63 |
-
["examples/16_robotarm.mp4"],
|
| 64 |
-
["examples/17_childrendancing.mp4"],
|
| 65 |
-
["examples/18_threedogs.mp4"],
|
| 66 |
-
["examples/19_cyclist.mp4"],
|
| 67 |
-
["examples/20_doughkneading.mp4"],
|
| 68 |
-
["examples/21_biker.mp4"],
|
| 69 |
-
["examples/22_dogskateboarder.mp4"],
|
| 70 |
-
["examples/23_racecar.mp4"],
|
| 71 |
-
["examples/24_clownfish.mp4"],
|
| 72 |
]
|
| 73 |
|
| 74 |
OBJ_ID = 0
|
| 75 |
|
|
|
|
| 76 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
| 77 |
model_cfg = "edgetam.yaml"
|
| 78 |
-
# Ensure predictor is explicitly built for CPU
|
| 79 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
| 80 |
-
# Removed .to("cuda") - predictor is already on CPU from build_sam2_video_predictor
|
| 81 |
-
# predictor.to("cuda")
|
| 82 |
print("predictor loaded on CPU")
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
| 86 |
-
# if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
|
| 87 |
-
# torch.backends.cuda.matmul.allow_tf32 = True
|
| 88 |
-
# torch.backends.cudnn.allow_tf32 = True
|
| 89 |
-
# elif not torch.cuda.is_available():
|
| 90 |
-
# print("Warning: CUDA not available. Running on CPU.")
|
| 91 |
-
|
| 92 |
-
|
| 93 |
def get_video_fps(video_path):
|
| 94 |
-
"""Gets the frames per second of a video file."""
|
| 95 |
-
if video_path is None or not os.path.exists(video_path):
|
| 96 |
-
print(f"Warning: Video file not found at {video_path}")
|
| 97 |
-
return None
|
| 98 |
cap = cv2.VideoCapture(video_path)
|
| 99 |
if not cap.isOpened():
|
| 100 |
-
print(
|
| 101 |
-
return
|
| 102 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 103 |
-
cap.release()
|
| 104 |
return fps
|
| 105 |
|
| 106 |
|
| 107 |
def reset(session_state):
|
| 108 |
-
"""Resets the UI and session state."""
|
| 109 |
-
print("Resetting demo.")
|
| 110 |
session_state["input_points"] = []
|
| 111 |
session_state["input_labels"] = []
|
| 112 |
-
# Reset the predictor state if it exists
|
| 113 |
if session_state["inference_state"] is not None:
|
| 114 |
-
|
| 115 |
-
# Assuming predictor.reset_state handles clearing current masks/features
|
| 116 |
-
predictor.reset_state(session_state["inference_state"])
|
| 117 |
-
# Explicitly delete or re-init the state object if a full reset is intended
|
| 118 |
-
# This depends on how predictor.reset_state works. Setting to None is safest for a full reset.
|
| 119 |
-
session_state["inference_state"] = None
|
| 120 |
-
except Exception as e:
|
| 121 |
-
print(f"Error resetting predictor state: {e}")
|
| 122 |
-
session_state["inference_state"] = None # Force-clear on error
|
| 123 |
-
|
| 124 |
session_state["first_frame"] = None
|
| 125 |
session_state["all_frames"] = None
|
| 126 |
-
session_state["inference_state"] = None
|
| 127 |
-
# Also reset video path if stored
|
| 128 |
-
session_state["video_path"] = None
|
| 129 |
-
|
| 130 |
-
# Resetting UI components and disabling buttons
|
| 131 |
return (
|
| 132 |
-
None,
|
| 133 |
-
gr.update(open=True),
|
| 134 |
-
None,
|
| 135 |
-
None,
|
| 136 |
-
gr.update(value=None, visible=False),
|
| 137 |
-
|
| 138 |
-
gr.update(interactive=False), # clear_points_btn disabled
|
| 139 |
-
gr.update(interactive=False), # reset_btn disabled
|
| 140 |
-
session_state, # return updated session state
|
| 141 |
)
|
| 142 |
|
| 143 |
|
| 144 |
def clear_points(session_state):
|
| 145 |
-
"""Clears selected points and resets segmentation on the first frame."""
|
| 146 |
-
print("Clearing points.")
|
| 147 |
session_state["input_points"] = []
|
| 148 |
session_state["input_labels"] = []
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
# This typically doesn't remove the video context, just the mask predictions
|
| 152 |
-
if session_state["inference_state"] is not None:
|
| 153 |
-
try:
|
| 154 |
-
# Assuming reset_state handles clearing current masks/features
|
| 155 |
-
predictor.reset_state(session_state["inference_state"])
|
| 156 |
-
print("Predictor state reset for clearing points.")
|
| 157 |
-
# If you need to re-initialize the state for the *same* video after clearing points,
|
| 158 |
-
# you might need to call predictor.init_state again here, using the stored video_path.
|
| 159 |
-
# Since we are on CPU, device="cpu" is implicit now.
|
| 160 |
-
if session_state["video_path"] is not None:
|
| 161 |
-
session_state["inference_state"] = predictor.init_state(video_path=session_state["video_path"])
|
| 162 |
-
print("Predictor state re-initialized after clearing points.")
|
| 163 |
-
else:
|
| 164 |
-
print("Warning: Could not re-initialize state after clear_points (video_path missing).")
|
| 165 |
-
session_state["inference_state"] = None # Ensure state is None if video_path is gone
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
except Exception as e:
|
| 169 |
-
print(f"Error resetting predictor state during clear_points: {e}")
|
| 170 |
-
# If reset fails, this might leave old masks. Force-clear state on error.
|
| 171 |
-
session_state["inference_state"] = None
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
# Return the original first frame image for points_map and clear the output_image
|
| 175 |
-
first_frame_img = session_state["first_frame"] if session_state["first_frame"] is not None else None
|
| 176 |
-
|
| 177 |
return (
|
| 178 |
-
|
| 179 |
-
None,
|
| 180 |
-
gr.update(value=None, visible=False),
|
| 181 |
-
session_state,
|
| 182 |
)
|
| 183 |
|
| 184 |
|
| 185 |
-
# Removed @spaces.GPU decorator
|
| 186 |
def preprocess_video_in(video_path, session_state):
|
| 187 |
-
|
| 188 |
-
print(f"Processing video: {video_path}")
|
| 189 |
-
if video_path is None or not os.path.exists(video_path):
|
| 190 |
-
print("No video path provided or file not found.")
|
| 191 |
-
# Reset state and UI elements if input is invalid
|
| 192 |
-
# Need to return updates for the buttons as well
|
| 193 |
return (
|
| 194 |
-
gr.update(open=True),
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
}
|
| 200 |
)
|
| 201 |
|
|
|
|
| 202 |
cap = cv2.VideoCapture(video_path)
|
| 203 |
if not cap.isOpened():
|
| 204 |
-
print(
|
| 205 |
return (
|
| 206 |
-
gr.update(open=True),
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
}
|
| 212 |
)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
first_frame = None
|
| 215 |
all_frames = []
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
while True:
|
| 218 |
ret, frame = cap.read()
|
| 219 |
if not ret:
|
| 220 |
break
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
cap.release()
|
| 227 |
-
|
| 228 |
-
if not all_frames:
|
| 229 |
-
print(f"Error: No frames read from video file {video_path}.")
|
| 230 |
-
return (
|
| 231 |
-
gr.update(open=True), None, None, gr.update(value=None, visible=False),
|
| 232 |
-
gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False),
|
| 233 |
-
{ # Reset session state
|
| 234 |
-
"first_frame": None, "all_frames": None, "input_points": [],
|
| 235 |
-
"input_labels": [], "inference_state": None, "video_path": None,
|
| 236 |
-
}
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
# Update session state with frames and path
|
| 240 |
-
session_state["first_frame"] = copy.deepcopy(first_frame) # Store a copy
|
| 241 |
session_state["all_frames"] = all_frames
|
| 242 |
-
session_state["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
session_state["input_points"] = []
|
| 244 |
session_state["input_labels"] = []
|
| 245 |
-
# Initialize state WITHOUT the device argument (uses predictor's device, which is CPU)
|
| 246 |
-
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
| 247 |
-
print("Video loaded and predictor state initialized on CPU.")
|
| 248 |
|
| 249 |
-
# Enable buttons after successful load
|
| 250 |
return [
|
| 251 |
gr.update(open=False), # video_in_drawer
|
| 252 |
-
first_frame, # points_map
|
| 253 |
-
None, # output_image
|
| 254 |
-
gr.update(value=None, visible=False), # output_video
|
| 255 |
-
|
| 256 |
-
gr.update(interactive=True), # clear_points_btn enabled
|
| 257 |
-
gr.update(interactive=True), # reset_btn enabled
|
| 258 |
-
session_state, # session_state
|
| 259 |
]
|
| 260 |
|
| 261 |
|
| 262 |
-
# Removed @spaces.GPU decorator
|
| 263 |
def segment_with_points(
|
| 264 |
point_type,
|
| 265 |
session_state,
|
| 266 |
evt: gr.SelectData,
|
| 267 |
):
|
| 268 |
-
""
|
| 269 |
-
|
| 270 |
-
if session_state["first_frame"] is None or session_state["inference_state"] is None:
|
| 271 |
-
print("Error: Cannot segment. No video loaded or inference state missing.")
|
| 272 |
-
# Return current states to avoid errors, without changing UI much
|
| 273 |
-
return (
|
| 274 |
-
session_state.get("first_frame"), # points_map (show first frame if exists)
|
| 275 |
-
None, # output_image (keep cleared)
|
| 276 |
-
session_state,
|
| 277 |
-
)
|
| 278 |
-
|
| 279 |
-
# evt.index is the (x, y) coordinate tuple
|
| 280 |
-
click_coords = evt.index
|
| 281 |
-
print(f"Clicked at: {click_coords} ({point_type})")
|
| 282 |
-
|
| 283 |
-
session_state["input_points"].append(click_coords)
|
| 284 |
|
| 285 |
if point_type == "include":
|
| 286 |
session_state["input_labels"].append(1)
|
| 287 |
elif point_type == "exclude":
|
| 288 |
session_state["input_labels"].append(0)
|
|
|
|
| 289 |
|
| 290 |
-
#
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
# Define the circle radius
|
| 295 |
-
fraction = 0.01
|
| 296 |
-
radius =
|
| 297 |
|
| 298 |
-
# Create a transparent layer to draw
|
| 299 |
-
|
| 300 |
|
| 301 |
-
# Draw points on the transparent layer
|
| 302 |
for index, track in enumerate(session_state["input_points"]):
|
| 303 |
-
# Ensure coordinates are integers for cv2.circle
|
| 304 |
-
point_coords = (int(track[0]), int(track[1]))
|
| 305 |
-
# Ensure color is RGBA (0-255)
|
| 306 |
if session_state["input_labels"][index] == 1:
|
| 307 |
-
cv2.circle(
|
| 308 |
else:
|
| 309 |
-
cv2.circle(
|
| 310 |
-
|
| 311 |
-
# Convert the transparent layer back to an image
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
selected_point_map_img = Image.alpha_composite(
|
| 316 |
-
first_frame_pil.copy(), transparent_layer_points_pil
|
| 317 |
)
|
| 318 |
|
| 319 |
-
#
|
| 320 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
|
|
|
| 321 |
labels = np.array(session_state["input_labels"], np.int32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
points_tensor = torch.tensor(points, dtype=torch.float32, device=device).unsqueeze(0) # Add batch dim
|
| 326 |
-
labels_tensor = torch.tensor(labels, dtype=torch.int32, device=device).unsqueeze(0) # Add batch dim
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
first_frame_output_img = None # Initialize output mask image as None in case of error
|
| 330 |
-
try:
|
| 331 |
-
# Note: predictor.add_new_points modifies the internal inference_state
|
| 332 |
-
_, _, out_mask_logits = predictor.add_new_points(
|
| 333 |
-
inference_state=session_state["inference_state"],
|
| 334 |
-
frame_idx=0, # Always segment on the first frame initially
|
| 335 |
-
obj_id=OBJ_ID,
|
| 336 |
-
points=points_tensor,
|
| 337 |
-
labels=labels_tensor,
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
# Process logits: detach from graph, move to CPU, apply threshold
|
| 341 |
-
# out_mask_logits is a list of tensors [tensor([batch_size, H, W])] for the requested obj_id
|
| 342 |
-
# Access the result for the first object (index 0) and the first item in batch (index 0)
|
| 343 |
-
mask_tensor = (out_mask_logits[0][0].detach().cpu() > 0.0) # Move to CPU before converting to numpy
|
| 344 |
-
mask_numpy = mask_tensor.numpy() # Convert to numpy
|
| 345 |
-
|
| 346 |
-
# Get the mask image (RGBA)
|
| 347 |
-
mask_image_pil = show_mask(mask_numpy, obj_id=OBJ_ID) # show_mask returns RGBA PIL Image
|
| 348 |
-
|
| 349 |
-
# Composite the mask onto the first frame for the output_image
|
| 350 |
-
# output_image shows the first frame *with the segmentation mask result*.
|
| 351 |
-
first_frame_output_img = Image.alpha_composite(first_frame_pil.copy(), mask_image_pil)
|
| 352 |
-
|
| 353 |
-
except Exception as e:
|
| 354 |
-
print(f"Error during segmentation on first frame: {e}")
|
| 355 |
-
# On error, first_frame_output_img remains None
|
| 356 |
-
|
| 357 |
-
# Removed CUDA cache clearing call
|
| 358 |
-
# if torch.cuda.is_available():
|
| 359 |
-
# torch.cuda.empty_cache()
|
| 360 |
|
| 361 |
-
return
|
| 362 |
|
| 363 |
|
| 364 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
| 365 |
-
"""Helper function to visualize a mask."""
|
| 366 |
-
# Ensure mask is a numpy array (and boolean)
|
| 367 |
-
if isinstance(mask, torch.Tensor):
|
| 368 |
-
mask = mask.detach().cpu().numpy() # Ensure it's on CPU and converted to numpy
|
| 369 |
-
# Convert potential float/int mask to boolean mask
|
| 370 |
-
mask = mask.astype(bool)
|
| 371 |
-
|
| 372 |
if random_color:
|
| 373 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 374 |
else:
|
| 375 |
cmap = plt.get_cmap("tab10")
|
| 376 |
-
cmap_idx = 0 if obj_id is None else obj_id
|
| 377 |
-
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
mask = mask.squeeze() # Remove singular dimensions like (H, W, 1)
|
| 382 |
-
if mask.ndim != 2:
|
| 383 |
-
print(f"Warning: show_mask received mask with shape {mask.shape}. Expected 2D.")
|
| 384 |
-
# Create an empty transparent image if mask shape is unexpected
|
| 385 |
-
h, w = mask.shape[:2] if mask.ndim >= 2 else (100, 100) # Use actual shape if possible, otherwise default
|
| 386 |
-
if convert_to_image:
|
| 387 |
-
return Image.fromarray(np.zeros((h, w, 4), dtype=np.uint8), "RGBA")
|
| 388 |
-
else:
|
| 389 |
-
return np.zeros((h, w, 4), dtype=np.uint8)
|
| 390 |
-
|
| 391 |
-
h, w = mask.shape
|
| 392 |
-
# Create an RGBA image from the mask and color
|
| 393 |
-
# Apply color where mask is True
|
| 394 |
-
# Need to reshape color to be broadcastable [1, 1, 4]
|
| 395 |
-
colored_mask = np.zeros((h, w, 4), dtype=np.float32) # Start with fully transparent black
|
| 396 |
-
# Apply the color only where the mask is True.
|
| 397 |
-
# This directly creates the colored overlay with transparency.
|
| 398 |
-
colored_mask[mask] = color
|
| 399 |
-
|
| 400 |
-
# Convert to uint8 [0-255]
|
| 401 |
-
colored_mask_uint8 = (colored_mask * 255).astype(np.uint8)
|
| 402 |
-
|
| 403 |
if convert_to_image:
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
else:
|
| 407 |
-
return colored_mask_uint8
|
| 408 |
|
| 409 |
|
| 410 |
-
# Removed @spaces.GPU decorator
|
| 411 |
def propagate_to_all(
|
| 412 |
-
video_in,
|
| 413 |
session_state,
|
| 414 |
):
|
| 415 |
-
"""Runs mask propagation through the video and generates the output video."""
|
| 416 |
-
print("Starting propagation...")
|
| 417 |
-
# Ensure state is ready
|
| 418 |
-
# Using session_state.get("video_path") is safer than video_in directly
|
| 419 |
-
current_video_path = session_state.get("video_path")
|
| 420 |
if (
|
| 421 |
-
len(session_state["input_points"]) == 0
|
| 422 |
-
or
|
| 423 |
or session_state["inference_state"] is None
|
| 424 |
-
or current_video_path is None # Ensure we have the original video path
|
| 425 |
):
|
| 426 |
-
print("Error: Cannot propagate. No points selected, video not loaded, or inference state missing.")
|
| 427 |
-
return (
|
| 428 |
-
gr.update(value=None, visible=False), # Hide output video on error
|
| 429 |
-
session_state,
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
# run propagation throughout the video and collect the results
|
| 433 |
-
video_segments = {}
|
| 434 |
-
try:
|
| 435 |
-
# This loop performs the core tracking prediction frame by frame
|
| 436 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
| 437 |
-
session_state["inference_state"]
|
| 438 |
-
):
|
| 439 |
-
# Process logits: detach from graph, move to CPU, convert to numpy boolean mask
|
| 440 |
-
# Ensure tensor is on CPU before converting to numpy
|
| 441 |
-
video_segments[out_frame_idx] = {
|
| 442 |
-
# out_mask_logits is a list of tensors (one per object tracked in this frame)
|
| 443 |
-
# Each tensor is [batch_size, H, W]. Batch size is 1 here.
|
| 444 |
-
# Access the result for the first object (index i) and the first item in batch (index 0)
|
| 445 |
-
out_obj_id: (out_mask_logits[i][0].detach().cpu() > 0.0).numpy()
|
| 446 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 447 |
-
}
|
| 448 |
-
# Optional: print progress
|
| 449 |
-
# print(f"Processed frame {out_frame_idx+1}/{len(session_state['all_frames'])}")
|
| 450 |
-
|
| 451 |
-
print("Propagation finished.")
|
| 452 |
-
except Exception as e:
|
| 453 |
-
print(f"Error during propagation: {e}")
|
| 454 |
return (
|
| 455 |
-
|
| 456 |
session_state,
|
| 457 |
)
|
| 458 |
|
| 459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
output_frames = []
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
current_mask_numpy = video_segments[out_frame_idx][OBJ_ID]
|
| 471 |
-
# Get the mask image (RGBA)
|
| 472 |
-
mask_image_pil = show_mask(current_mask_numpy, obj_id=OBJ_ID)
|
| 473 |
-
# Composite the mask onto the frame
|
| 474 |
-
output_frame_img_rgba = Image.alpha_composite(transparent_background, mask_image_pil)
|
| 475 |
-
# Convert back to numpy RGB (moviepy needs RGB or RGBA)
|
| 476 |
-
output_frame_np = np.array(output_frame_img_rgba.convert("RGB"))
|
| 477 |
-
else:
|
| 478 |
-
# If no mask for this frame/object, just use the original frame (converted to RGB)
|
| 479 |
-
# Note: all_frames are already RGB numpy arrays, so just use them directly.
|
| 480 |
-
# print(f"Warning: No mask found for frame {out_frame_idx} and object {OBJ_ID}. Using original frame.")
|
| 481 |
-
output_frame_np = original_frame_rgb # Already RGB numpy array
|
| 482 |
-
|
| 483 |
-
output_frames.append(output_frame_np)
|
| 484 |
-
|
| 485 |
-
# Removed CUDA cache clearing call
|
| 486 |
-
# if torch.cuda.is_available():
|
| 487 |
-
# torch.cuda.empty_cache()
|
| 488 |
-
|
| 489 |
-
# Define output path in a temporary directory
|
| 490 |
-
unique_id = datetime.now().strftime("%Y%m%d%H%M%S%f") # Use microseconds for more uniqueness
|
| 491 |
-
final_vid_filename = f"output_video_{unique_id}.mp4"
|
| 492 |
-
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_filename)
|
| 493 |
-
print(f"Output video path: {final_vid_output_path}")
|
| 494 |
-
|
| 495 |
|
| 496 |
# Create a video clip from the image sequence
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
print(f"Error creating ImageSequenceClip: {e}")
|
| 515 |
-
return (
|
| 516 |
-
gr.update(value=None, visible=False), # Hide output video on error
|
| 517 |
-
session_state,
|
| 518 |
-
)
|
| 519 |
-
|
| 520 |
-
# Write the result to a file. Use 'libx264' codec for broad compatibility.
|
| 521 |
-
# Added CPU optimization parameters for moviepy write
|
| 522 |
-
try:
|
| 523 |
-
print(f"Writing video file with codec='libx264', fps={fps}, preset='medium', threads='auto'")
|
| 524 |
-
clip.write_videofile(
|
| 525 |
-
final_vid_output_path,
|
| 526 |
-
codec="libx264",
|
| 527 |
-
fps=fps, # Ensure correct FPS is used during writing
|
| 528 |
-
preset="medium", # CPU optimization: 'fast', 'faster', 'veryfast' are options for speed vs size
|
| 529 |
-
threads="auto", # CPU optimization: Use multiple cores
|
| 530 |
-
logger=None # Suppress moviepy output
|
| 531 |
-
)
|
| 532 |
-
print("Video writing complete.")
|
| 533 |
-
# Return the path and make the video player visible
|
| 534 |
-
return (
|
| 535 |
-
gr.update(value=final_vid_output_path, visible=True),
|
| 536 |
-
session_state,
|
| 537 |
-
)
|
| 538 |
-
except Exception as e:
|
| 539 |
-
print(f"Error writing video file: {e}")
|
| 540 |
-
# Clean up potentially created partial file
|
| 541 |
-
if os.path.exists(final_vid_output_path):
|
| 542 |
-
try:
|
| 543 |
-
os.remove(final_vid_output_path)
|
| 544 |
-
print(f"Removed partial video file: {final_vid_output_path}")
|
| 545 |
-
except Exception as clean_e:
|
| 546 |
-
print(f"Error removing partial file: {clean_e}")
|
| 547 |
-
|
| 548 |
-
# Return None if writing fails
|
| 549 |
-
return (
|
| 550 |
-
gr.update(value=None, visible=False),
|
| 551 |
-
session_state,
|
| 552 |
-
)
|
| 553 |
|
| 554 |
|
| 555 |
-
def
|
| 556 |
-
"""Simply returns a Gradio update to make the output video visible."""
|
| 557 |
return gr.update(visible=True)
|
| 558 |
|
| 559 |
|
| 560 |
with gr.Blocks() as demo:
|
| 561 |
-
# Session state dictionary to hold video frames, points, labels, and predictor state
|
| 562 |
session_state = gr.State(
|
| 563 |
{
|
| 564 |
-
"first_frame": None,
|
| 565 |
-
"all_frames": None,
|
| 566 |
-
"input_points": [],
|
| 567 |
-
"input_labels": [],
|
| 568 |
-
"inference_state": None,
|
| 569 |
-
"
|
|
|
|
|
|
|
| 570 |
}
|
| 571 |
)
|
| 572 |
|
|
@@ -580,7 +356,7 @@ with gr.Blocks() as demo:
|
|
| 580 |
gr.Markdown(description_p)
|
| 581 |
|
| 582 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
| 583 |
-
video_in = gr.Video(label="Input Video", format="mp4")
|
| 584 |
|
| 585 |
with gr.Row():
|
| 586 |
point_type = gr.Radio(
|
|
@@ -588,142 +364,121 @@ with gr.Blocks() as demo:
|
|
| 588 |
choices=["include", "exclude"],
|
| 589 |
value="include",
|
| 590 |
scale=2,
|
| 591 |
-
interactive=True, # Make interactive
|
| 592 |
)
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
reset_btn = gr.Button("Reset", scale=1, interactive=False)
|
| 597 |
|
| 598 |
-
# points_map is where users click to add points. Needs to be interactive.
|
| 599 |
-
# Shows the first frame with points drawn on it.
|
| 600 |
points_map = gr.Image(
|
| 601 |
-
label="
|
| 602 |
-
type="numpy",
|
| 603 |
-
interactive=True, # <--- CHANGED TO True to enable clicking
|
| 604 |
-
height=400, # Set a fixed height for better UI
|
| 605 |
-
width="auto", # Let width adjust
|
| 606 |
-
show_share_button=False,
|
| 607 |
-
show_download_button=False,
|
| 608 |
)
|
| 609 |
|
| 610 |
with gr.Column():
|
| 611 |
gr.Markdown("# Try some of the examples below ⬇️")
|
| 612 |
gr.Examples(
|
| 613 |
examples=examples,
|
| 614 |
-
inputs=[
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
# Removed extra blank lines
|
| 619 |
-
|
| 620 |
-
# output_image shows the segmentation mask prediction on the *first* frame
|
| 621 |
-
output_image = gr.Image(
|
| 622 |
-
label="Segmentation Mask on First Frame", # Clearer label
|
| 623 |
-
type="numpy",
|
| 624 |
-
interactive=False, # Not interactive, just displays the mask
|
| 625 |
-
height=400, # Match height of points_map
|
| 626 |
-
width="auto", # Let width adjust
|
| 627 |
-
show_share_button=False,
|
| 628 |
-
show_download_button=False,
|
| 629 |
)
|
|
|
|
|
|
|
|
|
|
| 630 |
|
| 631 |
-
|
| 632 |
-
output_video = gr.Video(visible=False, label="Tracking Result")
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
# --- Event Handlers ---
|
| 636 |
-
|
| 637 |
-
# When a new video file is uploaded via the file browser
|
| 638 |
-
# Added postprocess to update button interactivity based on whether video loaded
|
| 639 |
video_in.upload(
|
| 640 |
fn=preprocess_video_in,
|
| 641 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
| 642 |
outputs=[
|
| 643 |
-
video_in_drawer,
|
| 644 |
-
|
|
|
|
|
|
|
|
|
|
| 645 |
],
|
| 646 |
-
queue=False,
|
| 647 |
)
|
| 648 |
|
| 649 |
-
# When an example video is selected (change event)
|
| 650 |
-
# Added postprocess to update button interactivity
|
| 651 |
video_in.change(
|
| 652 |
fn=preprocess_video_in,
|
| 653 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
| 654 |
outputs=[
|
| 655 |
-
video_in_drawer,
|
| 656 |
-
|
|
|
|
|
|
|
|
|
|
| 657 |
],
|
| 658 |
-
queue=False,
|
| 659 |
)
|
| 660 |
|
| 661 |
-
|
| 662 |
-
# Triggered when a user clicks on the points_map image
|
| 663 |
points_map.select(
|
| 664 |
fn=segment_with_points,
|
| 665 |
inputs=[
|
| 666 |
-
point_type, # "include" or "exclude"
|
| 667 |
-
session_state,
|
| 668 |
],
|
| 669 |
outputs=[
|
| 670 |
-
points_map,
|
| 671 |
-
output_image,
|
| 672 |
-
session_state,
|
| 673 |
],
|
| 674 |
-
queue=False,
|
| 675 |
)
|
| 676 |
|
| 677 |
-
#
|
| 678 |
clear_points_btn.click(
|
| 679 |
fn=clear_points,
|
| 680 |
-
inputs=
|
| 681 |
outputs=[
|
| 682 |
-
points_map,
|
| 683 |
-
output_image,
|
| 684 |
-
output_video,
|
| 685 |
-
session_state,
|
| 686 |
],
|
| 687 |
-
queue=False,
|
| 688 |
)
|
| 689 |
|
| 690 |
-
# Button to reset the entire demo state and UI
|
| 691 |
reset_btn.click(
|
| 692 |
fn=reset,
|
| 693 |
-
inputs=
|
| 694 |
outputs=[
|
| 695 |
-
video_in,
|
| 696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 697 |
],
|
| 698 |
-
queue=False,
|
| 699 |
)
|
| 700 |
|
| 701 |
-
# Button to start mask propagation through the video
|
| 702 |
propagate_btn.click(
|
| 703 |
-
fn=
|
| 704 |
inputs=[],
|
| 705 |
-
outputs=
|
| 706 |
-
queue=False,
|
| 707 |
-
).then(
|
| 708 |
fn=propagate_to_all,
|
| 709 |
inputs=[
|
| 710 |
-
video_in,
|
| 711 |
-
session_state,
|
| 712 |
],
|
| 713 |
outputs=[
|
| 714 |
-
output_video,
|
| 715 |
-
session_state,
|
| 716 |
],
|
| 717 |
-
#
|
| 718 |
-
# Queue=True ensures requests wait if another is processing.
|
| 719 |
-
concurrency_limit=1,
|
| 720 |
-
queue=True,
|
| 721 |
)
|
| 722 |
|
| 723 |
|
| 724 |
-
|
| 725 |
-
demo.
|
| 726 |
-
print("Gradio demo starting...")
|
| 727 |
-
# Removed share=True for local debugging unless you specifically need a public link
|
| 728 |
-
demo.launch()
|
| 729 |
-
print("Gradio demo launched.")
|
|
|
|
| 7 |
import copy
|
| 8 |
import os
|
| 9 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
import tempfile
|
| 11 |
|
| 12 |
import cv2
|
| 13 |
import matplotlib.pyplot as plt
|
| 14 |
import numpy as np
|
| 15 |
+
import gradio as gr
|
|
|
|
| 16 |
import torch
|
| 17 |
|
| 18 |
from moviepy.editor import ImageSequenceClip
|
| 19 |
from PIL import Image
|
| 20 |
from sam2.build_sam import build_sam2_video_predictor
|
| 21 |
|
| 22 |
+
# Remove CUDA environment variables
|
| 23 |
+
if 'TORCH_CUDNN_SDPA_ENABLED' in os.environ:
|
| 24 |
+
del os.environ["TORCH_CUDNN_SDPA_ENABLED"]
|
| 25 |
+
|
| 26 |
# Description
|
| 27 |
+
title = "<center><strong><font size='8'>EdgeTAM CPU<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"
|
| 28 |
|
| 29 |
description_p = """# Instructions
|
| 30 |
<ol>
|
|
|
|
| 35 |
</ol>
|
| 36 |
"""
|
| 37 |
|
| 38 |
+
# examples - keeping fewer examples to reduce memory footprint
|
| 39 |
examples = [
|
| 40 |
["examples/01_dog.mp4"],
|
| 41 |
["examples/02_cups.mp4"],
|
| 42 |
["examples/03_blocks.mp4"],
|
| 43 |
["examples/04_coffee.mp4"],
|
| 44 |
["examples/05_default_juggle.mp4"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
]
|
| 46 |
|
| 47 |
OBJ_ID = 0
|
| 48 |
|
| 49 |
+
# Initialize model on CPU
|
| 50 |
sam2_checkpoint = "checkpoints/edgetam.pt"
|
| 51 |
model_cfg = "edgetam.yaml"
|
|
|
|
| 52 |
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
|
|
|
|
|
|
|
| 53 |
print("predictor loaded on CPU")
|
| 54 |
|
| 55 |
+
# Function to get video frame rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def get_video_fps(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
cap = cv2.VideoCapture(video_path)
|
| 58 |
if not cap.isOpened():
|
| 59 |
+
print("Error: Could not open video.")
|
| 60 |
+
return 30.0 # Default fallback value
|
| 61 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 62 |
+
cap.release()
|
| 63 |
return fps
|
| 64 |
|
| 65 |
|
| 66 |
def reset(session_state):
|
|
|
|
|
|
|
| 67 |
session_state["input_points"] = []
|
| 68 |
session_state["input_labels"] = []
|
|
|
|
| 69 |
if session_state["inference_state"] is not None:
|
| 70 |
+
predictor.reset_state(session_state["inference_state"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
session_state["first_frame"] = None
|
| 72 |
session_state["all_frames"] = None
|
| 73 |
+
session_state["inference_state"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
return (
|
| 75 |
+
None,
|
| 76 |
+
gr.update(open=True),
|
| 77 |
+
None,
|
| 78 |
+
None,
|
| 79 |
+
gr.update(value=None, visible=False),
|
| 80 |
+
session_state,
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
|
| 84 |
def clear_points(session_state):
|
|
|
|
|
|
|
| 85 |
session_state["input_points"] = []
|
| 86 |
session_state["input_labels"] = []
|
| 87 |
+
if session_state["inference_state"] is not None and session_state["inference_state"].get("tracking_has_started", False):
|
| 88 |
+
predictor.reset_state(session_state["inference_state"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return (
|
| 90 |
+
session_state["first_frame"],
|
| 91 |
+
None,
|
| 92 |
+
gr.update(value=None, visible=False),
|
| 93 |
+
session_state,
|
| 94 |
)
|
| 95 |
|
| 96 |
|
|
|
|
| 97 |
def preprocess_video_in(video_path, session_state):
|
| 98 |
+
if video_path is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
return (
|
| 100 |
+
gr.update(open=True), # video_in_drawer
|
| 101 |
+
None, # points_map
|
| 102 |
+
None, # output_image
|
| 103 |
+
gr.update(value=None, visible=False), # output_video
|
| 104 |
+
session_state,
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# Read the first frame
|
| 108 |
cap = cv2.VideoCapture(video_path)
|
| 109 |
if not cap.isOpened():
|
| 110 |
+
print("Error: Could not open video.")
|
| 111 |
return (
|
| 112 |
+
gr.update(open=True), # video_in_drawer
|
| 113 |
+
None, # points_map
|
| 114 |
+
None, # output_image
|
| 115 |
+
gr.update(value=None, visible=False), # output_video
|
| 116 |
+
session_state,
|
|
|
|
| 117 |
)
|
| 118 |
|
| 119 |
+
# For CPU optimization - determine video properties
|
| 120 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 121 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 122 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 123 |
+
|
| 124 |
+
# Determine if we need to resize for CPU performance
|
| 125 |
+
target_width = 640 # Target width for processing on CPU
|
| 126 |
+
scale_factor = 1.0
|
| 127 |
+
|
| 128 |
+
if frame_width > target_width:
|
| 129 |
+
scale_factor = target_width / frame_width
|
| 130 |
+
frame_width = target_width
|
| 131 |
+
frame_height = int(frame_height * scale_factor)
|
| 132 |
+
|
| 133 |
+
# Read frames - for CPU we'll be more selective about which frames to keep
|
| 134 |
+
frame_number = 0
|
| 135 |
first_frame = None
|
| 136 |
all_frames = []
|
| 137 |
+
|
| 138 |
+
# For CPU optimization, skip frames if video is too long
|
| 139 |
+
frame_stride = 1
|
| 140 |
+
if total_frames > 300: # If more than 300 frames
|
| 141 |
+
frame_stride = max(1, int(total_frames / 300)) # Process at most ~300 frames
|
| 142 |
+
|
| 143 |
while True:
|
| 144 |
ret, frame = cap.read()
|
| 145 |
if not ret:
|
| 146 |
break
|
| 147 |
+
|
| 148 |
+
if frame_number % frame_stride == 0: # Process every frame_stride frames
|
| 149 |
+
# Resize the frame if needed
|
| 150 |
+
if scale_factor != 1.0:
|
| 151 |
+
frame = cv2.resize(frame, (frame_width, frame_height), interpolation=cv2.INTER_AREA)
|
| 152 |
+
|
| 153 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 154 |
+
frame = np.array(frame)
|
| 155 |
+
|
| 156 |
+
# Store the first frame
|
| 157 |
+
if first_frame is None:
|
| 158 |
+
first_frame = frame
|
| 159 |
+
all_frames.append(frame)
|
| 160 |
+
|
| 161 |
+
frame_number += 1
|
| 162 |
|
| 163 |
cap.release()
|
| 164 |
+
session_state["first_frame"] = copy.deepcopy(first_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
session_state["all_frames"] = all_frames
|
| 166 |
+
session_state["frame_stride"] = frame_stride
|
| 167 |
+
session_state["scale_factor"] = scale_factor
|
| 168 |
+
session_state["original_dimensions"] = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
| 169 |
+
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
| 170 |
+
|
| 171 |
+
session_state["inference_state"] = predictor.init_state(video_path=video_path)
|
| 172 |
session_state["input_points"] = []
|
| 173 |
session_state["input_labels"] = []
|
|
|
|
|
|
|
|
|
|
| 174 |
|
|
|
|
| 175 |
return [
|
| 176 |
gr.update(open=False), # video_in_drawer
|
| 177 |
+
first_frame, # points_map
|
| 178 |
+
None, # output_image
|
| 179 |
+
gr.update(value=None, visible=False), # output_video
|
| 180 |
+
session_state,
|
|
|
|
|
|
|
|
|
|
| 181 |
]
|
| 182 |
|
| 183 |
|
|
|
|
| 184 |
def segment_with_points(
|
| 185 |
point_type,
|
| 186 |
session_state,
|
| 187 |
evt: gr.SelectData,
|
| 188 |
):
|
| 189 |
+
session_state["input_points"].append(evt.index)
|
| 190 |
+
print(f"TRACKING INPUT POINT: {session_state['input_points']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
if point_type == "include":
|
| 193 |
session_state["input_labels"].append(1)
|
| 194 |
elif point_type == "exclude":
|
| 195 |
session_state["input_labels"].append(0)
|
| 196 |
+
print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")
|
| 197 |
|
| 198 |
+
# Open the image and get its dimensions
|
| 199 |
+
transparent_background = Image.fromarray(session_state["first_frame"]).convert(
|
| 200 |
+
"RGBA"
|
| 201 |
+
)
|
| 202 |
+
w, h = transparent_background.size
|
| 203 |
|
| 204 |
+
# Define the circle radius as a fraction of the smaller dimension
|
| 205 |
+
fraction = 0.01 # You can adjust this value as needed
|
| 206 |
+
radius = int(fraction * min(w, h))
|
| 207 |
|
| 208 |
+
# Create a transparent layer to draw on
|
| 209 |
+
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
|
| 210 |
|
|
|
|
| 211 |
for index, track in enumerate(session_state["input_points"]):
|
|
|
|
|
|
|
|
|
|
| 212 |
if session_state["input_labels"][index] == 1:
|
| 213 |
+
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
|
| 214 |
else:
|
| 215 |
+
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
|
| 216 |
+
|
| 217 |
+
# Convert the transparent layer back to an image
|
| 218 |
+
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
|
| 219 |
+
selected_point_map = Image.alpha_composite(
|
| 220 |
+
transparent_background, transparent_layer
|
|
|
|
|
|
|
| 221 |
)
|
| 222 |
|
| 223 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
| 224 |
points = np.array(session_state["input_points"], dtype=np.float32)
|
| 225 |
+
# for labels, `1` means positive click and `0` means negative click
|
| 226 |
labels = np.array(session_state["input_labels"], np.int32)
|
| 227 |
+
|
| 228 |
+
# For CPU optimization, we'll process with smaller batch size
|
| 229 |
+
_, _, out_mask_logits = predictor.add_new_points(
|
| 230 |
+
inference_state=session_state["inference_state"],
|
| 231 |
+
frame_idx=0,
|
| 232 |
+
obj_id=OBJ_ID,
|
| 233 |
+
points=points,
|
| 234 |
+
labels=labels,
|
| 235 |
+
)
|
| 236 |
|
| 237 |
+
mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
|
| 238 |
+
first_frame_output = Image.alpha_composite(transparent_background, mask_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
return selected_point_map, first_frame_output, session_state
|
| 241 |
|
| 242 |
|
| 243 |
def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
if random_color:
|
| 245 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 246 |
else:
|
| 247 |
cmap = plt.get_cmap("tab10")
|
| 248 |
+
cmap_idx = 0 if obj_id is None else obj_id
|
| 249 |
+
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
| 250 |
+
h, w = mask.shape[-2:]
|
| 251 |
+
mask = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 252 |
+
mask = (mask * 255).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
if convert_to_image:
|
| 254 |
+
mask = Image.fromarray(mask, "RGBA")
|
| 255 |
+
return mask
|
|
|
|
|
|
|
| 256 |
|
| 257 |
|
|
|
|
| 258 |
def propagate_to_all(
|
| 259 |
+
video_in,
|
| 260 |
session_state,
|
| 261 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
if (
|
| 263 |
+
len(session_state["input_points"]) == 0
|
| 264 |
+
or video_in is None
|
| 265 |
or session_state["inference_state"] is None
|
|
|
|
| 266 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
return (
|
| 268 |
+
None,
|
| 269 |
session_state,
|
| 270 |
)
|
| 271 |
|
| 272 |
+
# For CPU optimization: process in smaller batches
|
| 273 |
+
chunk_size = 5 # Process 5 frames at a time to avoid memory issues
|
| 274 |
+
|
| 275 |
+
# run propagation throughout the video and collect the results in a dict
|
| 276 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
| 277 |
+
print("starting propagate_in_video on CPU")
|
| 278 |
+
|
| 279 |
+
# Get the frames in chunks for CPU memory optimization
|
| 280 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
|
| 281 |
+
session_state["inference_state"]
|
| 282 |
+
):
|
| 283 |
+
video_segments[out_frame_idx] = {
|
| 284 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 285 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
# Free up memory after processing each frame
|
| 289 |
+
if len(video_segments) % chunk_size == 0:
|
| 290 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 291 |
+
|
| 292 |
+
# obtain the segmentation results every few frames
|
| 293 |
+
# For CPU optimization: increase stride to reduce processing
|
| 294 |
+
vis_frame_stride = max(1, len(video_segments) // 100) # Limit to ~100 frames in output
|
| 295 |
+
|
| 296 |
output_frames = []
|
| 297 |
+
for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
|
| 298 |
+
transparent_background = Image.fromarray(
|
| 299 |
+
session_state["all_frames"][out_frame_idx]
|
| 300 |
+
).convert("RGBA")
|
| 301 |
+
out_mask = video_segments[out_frame_idx][OBJ_ID]
|
| 302 |
+
mask_image = show_mask(out_mask)
|
| 303 |
+
output_frame = Image.alpha_composite(transparent_background, mask_image)
|
| 304 |
+
output_frame = np.array(output_frame)
|
| 305 |
+
output_frames.append(output_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
# Create a video clip from the image sequence
|
| 308 |
+
original_fps = get_video_fps(video_in)
|
| 309 |
+
fps = original_fps # Frames per second
|
| 310 |
+
|
| 311 |
+
# For CPU optimization - lower FPS if original is high
|
| 312 |
+
if fps > 24:
|
| 313 |
+
fps = 24
|
| 314 |
+
|
| 315 |
+
clip = ImageSequenceClip(output_frames, fps=fps)
|
| 316 |
+
|
| 317 |
+
# Write the result to a file - use lower quality for CPU
|
| 318 |
+
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 319 |
+
final_vid_output_path = f"output_video_{unique_id}.mp4"
|
| 320 |
+
final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)
|
| 321 |
+
|
| 322 |
+
# Lower bitrate for CPU processing
|
| 323 |
+
clip.write_videofile(final_vid_output_path, codec="libx264", bitrate="1000k")
|
| 324 |
|
| 325 |
+
return (
|
| 326 |
+
gr.update(value=final_vid_output_path),
|
| 327 |
+
session_state,
|
| 328 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
|
| 331 |
+
def update_ui():
|
|
|
|
| 332 |
return gr.update(visible=True)
|
| 333 |
|
| 334 |
|
| 335 |
with gr.Blocks() as demo:
|
|
|
|
| 336 |
session_state = gr.State(
|
| 337 |
{
|
| 338 |
+
"first_frame": None,
|
| 339 |
+
"all_frames": None,
|
| 340 |
+
"input_points": [],
|
| 341 |
+
"input_labels": [],
|
| 342 |
+
"inference_state": None,
|
| 343 |
+
"frame_stride": 1,
|
| 344 |
+
"scale_factor": 1.0,
|
| 345 |
+
"original_dimensions": None,
|
| 346 |
}
|
| 347 |
)
|
| 348 |
|
|
|
|
| 356 |
gr.Markdown(description_p)
|
| 357 |
|
| 358 |
with gr.Accordion("Input Video", open=True) as video_in_drawer:
|
| 359 |
+
video_in = gr.Video(label="Input Video", format="mp4")
|
| 360 |
|
| 361 |
with gr.Row():
|
| 362 |
point_type = gr.Radio(
|
|
|
|
| 364 |
choices=["include", "exclude"],
|
| 365 |
value="include",
|
| 366 |
scale=2,
|
|
|
|
| 367 |
)
|
| 368 |
+
propagate_btn = gr.Button("Track", scale=1, variant="primary")
|
| 369 |
+
clear_points_btn = gr.Button("Clear Points", scale=1)
|
| 370 |
+
reset_btn = gr.Button("Reset", scale=1)
|
|
|
|
| 371 |
|
|
|
|
|
|
|
| 372 |
points_map = gr.Image(
|
| 373 |
+
label="Frame with Point Prompt", type="numpy", interactive=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
)
|
| 375 |
|
| 376 |
with gr.Column():
|
| 377 |
gr.Markdown("# Try some of the examples below ⬇️")
|
| 378 |
gr.Examples(
|
| 379 |
examples=examples,
|
| 380 |
+
inputs=[
|
| 381 |
+
video_in,
|
| 382 |
+
],
|
| 383 |
+
examples_per_page=5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
)
|
| 385 |
+
|
| 386 |
+
output_image = gr.Image(label="Reference Mask")
|
| 387 |
+
output_video = gr.Video(visible=False)
|
| 388 |
|
| 389 |
+
# When new video is uploaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
video_in.upload(
|
| 391 |
fn=preprocess_video_in,
|
| 392 |
+
inputs=[
|
| 393 |
+
video_in,
|
| 394 |
+
session_state,
|
| 395 |
+
],
|
| 396 |
outputs=[
|
| 397 |
+
video_in_drawer, # Accordion to hide uploaded video player
|
| 398 |
+
points_map, # Image component where we add new tracking points
|
| 399 |
+
output_image,
|
| 400 |
+
output_video,
|
| 401 |
+
session_state,
|
| 402 |
],
|
| 403 |
+
queue=False,
|
| 404 |
)
|
| 405 |
|
|
|
|
|
|
|
| 406 |
video_in.change(
|
| 407 |
fn=preprocess_video_in,
|
| 408 |
+
inputs=[
|
| 409 |
+
video_in,
|
| 410 |
+
session_state,
|
| 411 |
+
],
|
| 412 |
outputs=[
|
| 413 |
+
video_in_drawer, # Accordion to hide uploaded video player
|
| 414 |
+
points_map, # Image component where we add new tracking points
|
| 415 |
+
output_image,
|
| 416 |
+
output_video,
|
| 417 |
+
session_state,
|
| 418 |
],
|
| 419 |
+
queue=False,
|
| 420 |
)
|
| 421 |
|
| 422 |
+
# triggered when we click on image to add new points
|
|
|
|
| 423 |
points_map.select(
|
| 424 |
fn=segment_with_points,
|
| 425 |
inputs=[
|
| 426 |
+
point_type, # "include" or "exclude"
|
| 427 |
+
session_state,
|
| 428 |
],
|
| 429 |
outputs=[
|
| 430 |
+
points_map, # updated image with points
|
| 431 |
+
output_image,
|
| 432 |
+
session_state,
|
| 433 |
],
|
| 434 |
+
queue=False,
|
| 435 |
)
|
| 436 |
|
| 437 |
+
# Clear every points clicked and added to the map
|
| 438 |
clear_points_btn.click(
|
| 439 |
fn=clear_points,
|
| 440 |
+
inputs=session_state,
|
| 441 |
outputs=[
|
| 442 |
+
points_map,
|
| 443 |
+
output_image,
|
| 444 |
+
output_video,
|
| 445 |
+
session_state,
|
| 446 |
],
|
| 447 |
+
queue=False,
|
| 448 |
)
|
| 449 |
|
|
|
|
| 450 |
reset_btn.click(
|
| 451 |
fn=reset,
|
| 452 |
+
inputs=session_state,
|
| 453 |
outputs=[
|
| 454 |
+
video_in,
|
| 455 |
+
video_in_drawer,
|
| 456 |
+
points_map,
|
| 457 |
+
output_image,
|
| 458 |
+
output_video,
|
| 459 |
+
session_state,
|
| 460 |
],
|
| 461 |
+
queue=False,
|
| 462 |
)
|
| 463 |
|
|
|
|
| 464 |
propagate_btn.click(
|
| 465 |
+
fn=update_ui,
|
| 466 |
inputs=[],
|
| 467 |
+
outputs=output_video,
|
| 468 |
+
queue=False,
|
| 469 |
+
).then(
|
| 470 |
fn=propagate_to_all,
|
| 471 |
inputs=[
|
| 472 |
+
video_in,
|
| 473 |
+
session_state,
|
| 474 |
],
|
| 475 |
outputs=[
|
| 476 |
+
output_video,
|
| 477 |
+
session_state,
|
| 478 |
],
|
| 479 |
+
queue=True, # Use queue for CPU processing
|
|
|
|
|
|
|
|
|
|
| 480 |
)
|
| 481 |
|
| 482 |
|
| 483 |
+
demo.queue()
|
| 484 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|