Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,412 Bytes
7529aa7 faee068 7529aa7 33760f7 7529aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import spaces
import torch
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' 🤔
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' 🤗
return f"Hello {zero + n} Tensor"
def load_model():
from llama_cpp import Llama, LlamaGrammar
model_url="https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q5_K_S.gguf"
llm = Llama(
model_path=model_url,
n_gpu_layers=-1, verbose=False
)
grammar = LlamaGrammar.from_string('''
root ::= sentence
answer ::= (weather | complaint | yesno | gen)
weather ::= ("Sunny." | "Cloudy." | "Rainy.")
complaint ::= "I don't like talking about the weather."
yesno ::= ("Yes." | "No.")
gen ::= "1. " [A-Z] [a-z] [a-z]*
sentence ::= [A-Z] [A-Za-z0-9 ,-]* ("." | "!" | "?")
''')
prompts = [
"How's the weather in London?",
"How's the weather in Munich?",
"How's the weather in Barcelona?",
]
for prompt in prompts:
output = llm(
prompt,
max_tokens=512,
temperature=0.4,
grammar=grammar
)
s = output['choices'][0]['text']
print(f'{s} , len(s) = {len(s)}')
print(output['choices'])
print(output['choices'][0]['text'])
print()
load_model()
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
demo.launch(share=False)
|