Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,866 Bytes
7529aa7 2b7cab2 095ce1b 8e2059a 7529aa7 49027e2 2b7cab2 7529aa7 49027e2 2f086fe 2b7cab2 1647ffa faee068 40ebb44 d2d4546 09a1596 d2d4546 dbe11d5 eb72820 d2d4546 faee068 112a7b2 b57a9a1 16fbfe8 33ba22e 7520afc 33760f7 7529aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import gradio as gr
import spaces
# import torch
from huggingface_hub import hf_hub_download
from llama_cpp import Llama, LlamaGrammar
# zero = torch.Tensor([0]).cuda()
# print(f'zero.device: {zero.device}') # <-- 'cpu' 🤔
@spaces.GPU
def greet(n):
global llm
llm = load_model(download_model())
# print(f'zero.device: {zero.device}') # <-- 'cuda:0' 🤗
grammar = LlamaGrammar.from_string('''
root ::= sentence
answer ::= (weather | complaint | yesno | gen)
weather ::= ("Sunny." | "Cloudy." | "Rainy.")
complaint ::= "I don't like talking about the weather."
yesno ::= ("Yes." | "No.")
gen ::= "1. " [A-Z] [a-z] [a-z]*
sentence ::= [A-Z] [A-Za-z0-9 ,-]* ("." | "!" | "?")
''')
prompts = [
"How's the weather in London?",
"How's the weather in Munich?",
"How's the weather in Barcelona?",
]
print(f'Making inference... {prompts[0]}')
output = llm(
prompts[0],
max_tokens=512,
temperature=0.4,
grammar=grammar
)
print(f'Returned..... {output}')
s = output['choices'][0]['text']
print(f'{s} , len(s) = {len(s)}')
print(output['choices'])
print(output['choices'][0]['text'])
print()
return f"Hello {s} Tensor"
def download_model():
REPO_ID = "TheBloke/Llama-2-7B-GGUF"
FILENAME = "llama-2-7b.Q5_K_S.gguf"
print(f'Downloading model {REPO_ID}/{FILENAME}')
m = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
print(f'status: {m}')
return m
def load_model(fp):
from llama_cpp import Llama, LlamaGrammar
print(f'Loading model: {fp}')
model_file=fp
llm = Llama(
model_path=model_file,
n_gpu_layers=-1, verbose=True
)
return llm
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
demo.launch(share=False)
|