File size: 6,337 Bytes
d36d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from typing import (
    Tuple,
    List,
    Optional,
    Dict,
    Callable,
    Union,
    cast,
)
from collections import namedtuple
from abc import ABC, abstractmethod
from dataclasses import dataclass

import numpy as np

import torch as T
from torch import nn
from torch.nn import functional as F

from torch import Tensor

from .rnn_base import (
    IRecurrentCell,
    IRecurrentCellBuilder,
    RecurrentLayer,
    RecurrentLayerStack,
)

__all__ = [
    'K_LSTM',
    'K_LSTM_Cell',
    'K_LSTM_Cell_Builder',
]

ACTIVATIONS = {
    'sigmoid': nn.Sigmoid(),
    'tanh': nn.Tanh(),
    'hard_tanh': nn.Hardtanh(),
    'relu': nn.ReLU(),
}

GateSpans = namedtuple('GateSpans', ['I', 'F', 'G', 'O'])

@dataclass
class K_LSTM_Cell_Builder(IRecurrentCellBuilder):
    vertical_dropout            : float = 0.0
    recurrent_dropout           : float = 0.0
    recurrent_dropout_mode      : str   = 'gal_tied'
    input_kernel_initialization : str   = 'xavier_uniform'
    recurrent_activation        : str   = 'sigmoid'
    tied_forget_gate            : bool  = False

    def make(self, input_size: int):
        return K_LSTM_Cell(input_size, self)

class K_LSTM_Cell(IRecurrentCell):
    def __repr__(self):
        return (
            f'{self.__class__.__name__}('
            + ', '.join(
                [
                    f'in: {self.Dx}',
                    f'hid: {self.Dh}',
                    f'rdo: {self.recurrent_dropout_p} @{self.recurrent_dropout_mode}',
                    f'vdo: {self.vertical_dropout_p}'
                ]
            )
            +')'
        )

    def __init__(
            self,
            input_size: int,
            args: K_LSTM_Cell_Builder,
    ):
        super().__init__()
        self._args = args
        self.Dx = input_size
        self.Dh = args.hidden_size
        self.recurrent_kernel = nn.Linear(self.Dh, self.Dh * 4)
        self.input_kernel     = nn.Linear(self.Dx, self.Dh * 4)

        self.recurrent_dropout_p    = args.recurrent_dropout or 0.0
        self.vertical_dropout_p     = args.vertical_dropout or 0.0
        self.recurrent_dropout_mode = args.recurrent_dropout_mode
        
        self.recurrent_dropout = nn.Dropout(self.recurrent_dropout_p)
        self.vertical_dropout  = nn.Dropout(self.vertical_dropout_p)

        self.tied_forget_gate = args.tied_forget_gate

        if isinstance(args.recurrent_activation, str):
            self.fun_rec = ACTIVATIONS[args.recurrent_activation]
        else:
            self.fun_rec = args.recurrent_activation

        self.reset_parameters_()

    # @T.jit.ignore
    def get_recurrent_weights(self):
        # type: () -> Tuple[GateSpans, GateSpans]
        W = self.recurrent_kernel.weight.chunk(4, 0)
        b = self.recurrent_kernel.bias.chunk(4, 0)
        W = GateSpans(W[0], W[1], W[2], W[3])
        b = GateSpans(b[0], b[1], b[2], b[3])
        return W, b

    # @T.jit.ignore
    def get_input_weights(self):
        # type: () -> Tuple[GateSpans, GateSpans]
        W = self.input_kernel.weight.chunk(4, 0)
        b = self.input_kernel.bias.chunk(4, 0)
        W = GateSpans(W[0], W[1], W[2], W[3])
        b = GateSpans(b[0], b[1], b[2], b[3])
        return W, b

    @T.jit.ignore
    def reset_parameters_(self):
        rw, rb = self.get_recurrent_weights()
        iw, ib = self.get_input_weights()

        nn.init.zeros_(self.input_kernel.bias)
        nn.init.zeros_(self.recurrent_kernel.bias)
        nn.init.ones_(rb.F)
        #^ forget bias

        for W in rw:
            nn.init.orthogonal_(W)
        for W in iw:
            nn.init.xavier_uniform_(W)

    @T.jit.export
    def get_init_state(self, input: Tensor) -> Tuple[Tensor, Tensor]:
        batch_size = input.shape[1]
        h0 = T.zeros(batch_size, self.Dh, device=input.device)
        c0 = T.zeros(batch_size, self.Dh, device=input.device)
        return (h0, c0)

    def apply_input_kernel(self, xt: Tensor) -> List[Tensor]:
        xto = self.vertical_dropout(xt)
        out = self.input_kernel(xto).chunk(4, 1)
        # return cast(List[Tensor], out)
        return out

    def apply_recurrent_kernel(self, h_tm1: Tensor):
        #^ h_tm1 : [b h]
        mode = self.recurrent_dropout_mode
        if mode == 'gal_tied':
            hto = self.recurrent_dropout(h_tm1)
            out = self.recurrent_kernel(hto)
            #^ out : [b 4h]
            outs = out.chunk(4, -1)
        elif mode == 'gal_gates':
            outs = []
            WW, bb = self.get_recurrent_weights()
            for i in range(4):
                hto = self.recurrent_dropout(h_tm1)
                outs.append(F.linear(hto, WW[i], bb[i]))
        else:
            outs = self.recurrent_kernel(h_tm1).chunk(4, -1)
        return outs

    def forward(self, input, state):
        # type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]
        #^ input : [b i]
        #^ state.h : [b h]

        (h_tm1, c_tm1) = state

        Xi, Xf, Xg, Xo = self.apply_input_kernel(input)
        Hi, Hf, Hg, Ho = self.apply_recurrent_kernel(h_tm1)

        ft = self.fun_rec(Xf + Hf)
        ot = self.fun_rec(Xo + Ho)
        if self.tied_forget_gate:
            it = 1.0 - ft
        else:
            it = self.fun_rec(Xi + Hi)

        gt = T.tanh(Xg + Hg) # * np.sqrt(3)
        if self.recurrent_dropout_mode == 'semeniuta':
            #* https://arxiv.org/abs/1603.05118
            gt = self.recurrent_dropout(gt)

        ct = (ft * c_tm1) + (it * gt)

        ht = ot * T.tanh(ct)

        return ht, (ht, ct)

    @T.jit.export
    def loop(self, inputs, state_t0, mask=None):
        # type: (List[Tensor], Tuple[Tensor, Tensor], Optional[List[Tensor]]) -> Tuple[List[Tensor], Tuple[Tensor, Tensor]]
        '''
        This loops over t (time) steps
        '''
        #^ inputs      : t * [b i]
        #^ state_t0[i] : [b s]
        #^ out         : [t b h]
        state = state_t0
        outs = []
        for xt in inputs:
            ht, state = self(xt, state)
            outs.append(ht)

        return outs, state

class K_LSTM(RecurrentLayerStack):
    def __init__(
            self,
            *args,
            **kargs,
    ):
        builder = K_LSTM_Cell_Builder
        super().__init__(
                builder,
                *args, **kargs
            )