Spaces:
Sleeping
Sleeping
| import openai | |
| import gradio | |
| import os | |
| openai.api_key = os.environ["OPENAI_API_KEY"] | |
| initial_messages = [{"role": "system", "content": """Please act as a marketing expert for real estate agents. Your role is | |
| to generate topic summary ideas for social media videos. Follow these steps in this order: | |
| 1. Before you execute any steps, consider the last input from the user as a suggestion for the types of topics you should create. | |
| 2. Generate 100 ideas for videos a real estate agent should make, and analyze them to choose the 10 most compelling. Do not return all 100 ideas. | |
| 3. Return a list of these 10 most compelling ideas."""}] | |
| def CustomChatGPT(user_input, messages): | |
| messages.append({"role": "user", "content": user_input}) | |
| response = openai.ChatCompletion.create( | |
| model = "gpt-3.5-turbo", | |
| messages = messages | |
| ) | |
| ChatGPT_reply = response["choices"][0]["message"]["content"] | |
| messages.append({"role": "assistant", "content": ChatGPT_reply}) | |
| return ChatGPT_reply, messages | |
| def wrapped_chat_gpt(user_input): | |
| # Replace the following line with your method to retrieve the messages list for the current user | |
| messages = initial_messages.copy() | |
| reply, updated_messages = CustomChatGPT(user_input, messages) | |
| # Replace the following line with your method to store the updated messages list for the current user | |
| # Store updated_messages | |
| return reply | |
| demo = gradio.Interface(fn=wrapped_chat_gpt, inputs="text", outputs="text", title="Video Idea Generator") | |
| demo.launch(inline=False) | |