File size: 1,824 Bytes
3484a3c
3620f53
f5512c6
4eeb41c
cf8da98
4eeb41c
41ca7d6
96d71a8
cb94a33
 
 
 
085d4ff
 
4eeb41c
41ca7d6
fec0c5b
3620f53
 
 
4eeb41c
3620f53
 
41ca7d6
4eeb41c
41ca7d6
 
 
4eeb41c
41ca7d6
4eeb41c
41ca7d6
 
4eeb41c
41ca7d6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import openai
import gradio
import os

openai.api_key = os.environ["OPENAI_API_KEY"]

initial_messages = [{"role": "system", "content": """Please create engaging and informative video scripts for real 
estate agents to use on social media. The target audience is potential homebuyers and sellers.
The tone should be professional and friendly, with a focus on building trust and showcasing the agent's expertise. 
Please incorporate a strong call-to-action at the end of each script, 
encouraging viewers to contact the agent for more information or assistance. 
Write only the words the agent should read into the camera. Once you create the script, analyze it and determine 5 
engaging hooks that could replace the first sentence. Analyze those 5 hooks, pick the best one, and replace the 
existing hook in the script you wrote with the new one. Deliver the script with the new hook included."""}]

def CustomChatGPT(user_input, messages):
    messages.append({"role": "user", "content": user_input})
    response = openai.ChatCompletion.create(
        model = "gpt-3.5-turbo",
        messages = messages
    )
    ChatGPT_reply = response["choices"][0]["message"]["content"]
    messages.append({"role": "assistant", "content": ChatGPT_reply})
    return ChatGPT_reply, messages

def wrapped_chat_gpt(user_input):
    # Replace the following line with your method to retrieve the messages list for the current user
    messages = initial_messages.copy()

    reply, updated_messages = CustomChatGPT(user_input, messages)

    # Replace the following line with your method to store the updated messages list for the current user
    # Store updated_messages

    return reply

demo = gradio.Interface(fn=wrapped_chat_gpt, inputs="text", outputs="text", title="Real Estate Video Script Writer")

demo.launch(inline=False)