bishmoy commited on
Commit
64ad88f
·
verified ·
1 Parent(s): ab0bdd5

Updated mistral model to Mistral-7B-Instruct-v0.3

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -12,7 +12,7 @@ from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
12
 
13
  retrieve_results = 10
14
  show_examples = False
15
- llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-2-2b-it', 'None']
16
 
17
  token = os.getenv("HF_TOKEN")
18
 
@@ -82,7 +82,7 @@ def rag_cleaner(inp):
82
  date = inp['document_metadata']['_time']
83
  return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
84
 
85
- def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
86
  if formatted:
87
  sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
88
  message = f"Question: {question}"
@@ -110,7 +110,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
110
 
111
  with gr.Accordion("Advanced Settings", open=False):
112
  with gr.Row(equal_height = True):
113
- llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
114
  llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
115
  database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
116
  stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
@@ -119,7 +119,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
119
  input = gr.Textbox(show_label = False, visible = False)
120
  gr_md = gr.Markdown(mark_text + md_text_initial)
121
 
122
- def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
123
  prompt_text_from_data = ""
124
  database_to_use = database_choice
125
  if database_choice == index_info:
@@ -151,7 +151,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
151
  prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
152
  return md_text_updated, prompt
153
 
154
- def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
155
  model_disabled_text = "LLM Model is disabled"
156
  output = ""
157
 
 
12
 
13
  retrieve_results = 10
14
  show_examples = False
15
+ llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.3', 'google/gemma-2-2b-it', 'None']
16
 
17
  token = os.getenv("HF_TOKEN")
18
 
 
82
  date = inp['document_metadata']['_time']
83
  return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
84
 
85
+ def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
86
  if formatted:
87
  sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
88
  message = f"Question: {question}"
 
110
 
111
  with gr.Accordion("Advanced Settings", open=False):
112
  with gr.Row(equal_height = True):
113
+ llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.3', label = 'LLM Model')
114
  llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
115
  database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
116
  stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
 
119
  input = gr.Textbox(show_label = False, visible = False)
120
  gr_md = gr.Markdown(mark_text + md_text_initial)
121
 
122
+ def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
123
  prompt_text_from_data = ""
124
  database_to_use = database_choice
125
  if database_choice == index_info:
 
151
  prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
152
  return md_text_updated, prompt
153
 
154
+ def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3', stream_outputs = False):
155
  model_disabled_text = "LLM Model is disabled"
156
  output = ""
157