File size: 6,501 Bytes
df89a31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import pickle
from pathlib import Path

import numpy as np
import h5py
import faiss
import click


def getFlatIP():
    test_index = faiss.IndexFlatIP(768)
    return test_index


def getFlatL2():
    test_index = faiss.IndexFlatL2(768)
    return test_index


def getIVFFlat(all_keys, seen_test, unseen_test, seen_val, unseen_val):
    quantizer = faiss.IndexFlatIP(768)
    test_index = faiss.IndexIVFFlat(quantizer, 768, 128)
    test_index.train(all_keys)
    test_index.train(seen_test)
    test_index.train(unseen_test)
    test_index.train(seen_val)
    test_index.train(unseen_val)
    return test_index


def getHNSW():
    # 16: connections for each vertex. efSearch: depth of search during search. efConstruction: depth of search during build
    test_index = faiss.IndexHNSWFlat(768, 16)
    test_index.hnsw.efSearch = 32
    test_index.hnsw.efConstruction = 64
    return test_index


def getLSH():
    test_index = faiss.IndexLSH(768, 768 * 2)
    return test_index


def getIdToEmbedding(allid, stid, utid, svalid, uvalid, all_keys, seen_test, unseen_test, seen_val, unseen_val):
    id_to_emb_dict = dict()
    i = 0
    for id in allid:
        id_to_emb_dict[id] = np.array([all_keys[i]])
        i += 1
    for id in stid:
        id_to_emb_dict[id] = np.array([seen_test[i]])
        i += 1
    for id in utid:
        id_to_emb_dict[id] = np.array([unseen_test[i]])
        i += 1
    for id in svalid:
        id_to_emb_dict[id] = np.array([seen_val[i]])
        i += 1
    for id in uvalid:
        id_to_emb_dict[id] = np.array([unseen_val[i]])
        i += 1

    return id_to_emb_dict


@click.command()
@click.option(
    "--input",
    type=click.Path(path_type=Path),
    default="bioscan-clip-scripts/extracted_features",
    help="Path to extracted features",
)
@click.option(
    "--metadata", type=click.Path(path_type=Path), default="data/BIOSCAN_5M/BIOSCAN_5M.hdf5", help="Path to metadata"
)
@click.option(
    "--output", type=click.Path(path_type=Path), default="bioscan-clip-scripts/index", help="Path to save the index"
)
def main(input, metadata, output):
    # initialize data
    all_keys = h5py.File(input / "extracted_features_of_all_keys.hdf5", "r", libver="latest")
    all_keys_dna = all_keys["encoded_dna_feature"][:]
    all_keys_im = all_keys["encoded_image_feature"][:]

    seen_test = h5py.File(input / "extracted_features_of_seen_test.hdf5", "r", libver="latest")
    seen_test_dna = seen_test["encoded_dna_feature"][:]
    seen_test_im = seen_test["encoded_image_feature"][:]

    unseen_test = h5py.File(input / "extracted_features_of_unseen_test.hdf5", "r", libver="latest")
    unseen_test_dna = unseen_test["encoded_dna_feature"][:]
    unseen_test_im = unseen_test["encoded_image_feature"][:]

    seen_val = h5py.File(input / "extracted_features_of_seen_val.hdf5", "r", libver="latest")
    seen_val_dna = seen_val["encoded_dna_feature"][:]
    seen_val_im = seen_val["encoded_image_feature"][:]

    unseen_val = h5py.File(input / "extracted_features_of_unseen_val.hdf5", "r", libver="latest")
    unseen_val_dna = unseen_val["encoded_dna_feature"][:]
    unseen_val_im = unseen_val["encoded_image_feature"][:]

    dataset = h5py.File(metadata, "r", libver="latest")
    id_field = "sampleid"  # "processid"
    allid = [item.decode("utf-8") for item in dataset["all_keys"][id_field][:]]
    stid = [item.decode("utf-8") for item in dataset["test_seen"][id_field][:]]
    utid = [item.decode("utf-8") for item in dataset["test_unseen"][id_field][:]]
    svalid = [item.decode("utf-8") for item in dataset["val_seen"][id_field][:]]
    uvalid = [item.decode("utf-8") for item in dataset["val_unseen"][id_field][:]]

    all_keys = dataset["all_keys"]
    seen_test = dataset["test_seen"]
    unseen_test = dataset["test_unseen"]
    seen_val = dataset["val_seen"]
    unseen_val = dataset["val_unseen"]

    # d = getIdToEmbedding(allid, stid, utid, svalid, uvalid, all_keys_dna, seen_test_dna, unseen_test_dna, seen_val_dna, unseen_val_dna)
    # d = getIdToEmbedding(allid, stid, utid, svalid, uvalid, all_keys_im, seen_test_im, unseen_test_im, seen_val_im, unseen_val_im)

    big_id_to_image_emb_dict = dict()
    i = 0
    for object in allid:
        big_id_to_image_emb_dict[object] = np.array([all_keys_im[i]])
        i += 1
    i = 0
    for object in stid:
        big_id_to_image_emb_dict[object] = np.array([seen_test_im[i]])
        i += 1
    i = 0
    for object in utid:
        big_id_to_image_emb_dict[object] = np.array([unseen_test_im[i]])
        i += 1
    i = 0
    for object in svalid:
        big_id_to_image_emb_dict[object] = np.array([seen_val_im[i]])
        i += 1
    i = 0
    for object in uvalid:
        big_id_to_image_emb_dict[object] = np.array([unseen_val_im[i]])
        i += 1

    ###

    big_id_to_dna_emb_dict = dict()
    i = 0
    for object in allid:
        big_id_to_dna_emb_dict[object] = np.array([all_keys_dna[i]])
        i += 1
    i = 0
    for object in stid:
        big_id_to_dna_emb_dict[object] = np.array([seen_test_dna[i]])
        i += 1
    i = 0
    for object in utid:
        big_id_to_dna_emb_dict[object] = np.array([unseen_test_dna[i]])
        i += 1
    i = 0
    for object in svalid:
        big_id_to_dna_emb_dict[object] = np.array([seen_val_dna[i]])
        i += 1
    i = 0
    for object in uvalid:
        big_id_to_dna_emb_dict[object] = np.array([unseen_val_dna[i]])
        i += 1

    ###

    processid_to_indx = dict()
    big_indx_to_id_dict = dict()
    i = 0
    for object in allid:
        big_indx_to_id_dict[i] = object
        processid_to_indx[object] = i
        i += 1

    for object in stid:
        big_indx_to_id_dict[i] = object
        processid_to_indx[object] = i
        i += 1

    for object in utid:
        big_indx_to_id_dict[i] = object
        processid_to_indx[object] = i
        i += 1

    for object in svalid:
        big_indx_to_id_dict[i] = object
        processid_to_indx[object] = i
        i += 1

    for object in uvalid:
        big_indx_to_id_dict[i] = object
        processid_to_indx[object] = i
        i += 1

    ###

    with open(output / "big_id_to_image_emb_dict.pickle", "wb") as f:
        pickle.dump(big_id_to_image_emb_dict, f)
    with open(output / "big_id_to_dna_emb_dict.pickle", "wb") as f:
        pickle.dump(big_id_to_dna_emb_dict, f)
    with open(output / "big_indx_to_id_dict.pickle", "wb") as f:
        pickle.dump(big_indx_to_id_dict, f)


if __name__ == "__main__":
    main()