Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +266 -0
- config.py +40 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import tempfile
|
4 |
+
import requests
|
5 |
+
import base64
|
6 |
+
import numpy as np
|
7 |
+
import logging
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from typing import Optional, Union, Tuple
|
10 |
+
from PIL import Image
|
11 |
+
from io import BytesIO
|
12 |
+
from ultralytics import YOLO
|
13 |
+
import streamlit as st
|
14 |
+
import yt_dlp as youtube_dl
|
15 |
+
from config import Config
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class DetectionResult:
|
23 |
+
"""Data class to store detection results"""
|
24 |
+
success: bool
|
25 |
+
image: Optional[np.ndarray] = None
|
26 |
+
error_message: Optional[str] = None
|
27 |
+
|
28 |
+
class YOLOModel:
|
29 |
+
"""Class to handle YOLO model operations"""
|
30 |
+
def __init__(self, model_name: str = Config.DEFAULT_MODEL):
|
31 |
+
self.model = self._load_model(model_name)
|
32 |
+
|
33 |
+
def _load_model(self, model_name: str) -> Optional[YOLO]:
|
34 |
+
"""Load YOLO model with error handling"""
|
35 |
+
try:
|
36 |
+
return YOLO(model_name)
|
37 |
+
except Exception as e:
|
38 |
+
logger.error(f"Error loading model: {e}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
def detect_objects(self, image: np.ndarray) -> DetectionResult:
|
42 |
+
"""Perform object detection on the input image"""
|
43 |
+
if self.model is None:
|
44 |
+
return DetectionResult(False, error_message="Model not loaded")
|
45 |
+
|
46 |
+
try:
|
47 |
+
results = self.model(image)
|
48 |
+
annotated_image = image.copy()
|
49 |
+
|
50 |
+
for result in results[0].boxes:
|
51 |
+
x1, y1, x2, y2 = map(int, result.xyxy[0])
|
52 |
+
label = self.model.names[int(result.cls)]
|
53 |
+
confidence = result.conf.item()
|
54 |
+
|
55 |
+
if confidence < Config.CONFIDENCE_THRESHOLD:
|
56 |
+
continue
|
57 |
+
|
58 |
+
cv2.rectangle(
|
59 |
+
annotated_image,
|
60 |
+
(x1, y1),
|
61 |
+
(x2, y2),
|
62 |
+
Config.BBOX_COLOR,
|
63 |
+
2
|
64 |
+
)
|
65 |
+
label_text = f'{label} {confidence:.2f}'
|
66 |
+
cv2.putText(
|
67 |
+
annotated_image,
|
68 |
+
label_text,
|
69 |
+
(x1, y1 - 10),
|
70 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
71 |
+
Config.FONT_SCALE,
|
72 |
+
Config.BBOX_COLOR,
|
73 |
+
Config.FONT_THICKNESS
|
74 |
+
)
|
75 |
+
|
76 |
+
return DetectionResult(True, annotated_image)
|
77 |
+
except Exception as e:
|
78 |
+
logger.error(f"Error during object detection: {e}")
|
79 |
+
return DetectionResult(False, error_message=str(e))
|
80 |
+
|
81 |
+
class ImageProcessor:
|
82 |
+
"""Class to handle image processing operations"""
|
83 |
+
def __init__(self, model: YOLOModel):
|
84 |
+
self.model = model
|
85 |
+
|
86 |
+
def process_image(self, image: Union[Image.Image, str]) -> DetectionResult:
|
87 |
+
"""Process image from various sources (PIL Image or URL)"""
|
88 |
+
try:
|
89 |
+
if isinstance(image, str):
|
90 |
+
image = self._load_image_from_url(image)
|
91 |
+
|
92 |
+
if image is None:
|
93 |
+
return DetectionResult(False, error_message="Failed to load image")
|
94 |
+
|
95 |
+
np_image = np.array(image)
|
96 |
+
return self.model.detect_objects(np_image)
|
97 |
+
except Exception as e:
|
98 |
+
logger.error(f"Error processing image: {e}")
|
99 |
+
return DetectionResult(False, error_message=str(e))
|
100 |
+
|
101 |
+
def _load_image_from_url(self, url: str) -> Optional[Image.Image]:
|
102 |
+
"""Load image from URL with support for base64"""
|
103 |
+
try:
|
104 |
+
if url.startswith('data:image'):
|
105 |
+
header, encoded = url.split(',', 1)
|
106 |
+
image_data = base64.b64decode(encoded)
|
107 |
+
return Image.open(BytesIO(image_data))
|
108 |
+
else:
|
109 |
+
response = requests.get(url)
|
110 |
+
response.raise_for_status()
|
111 |
+
return Image.open(BytesIO(response.content))
|
112 |
+
except Exception as e:
|
113 |
+
logger.error(f"Error loading image from URL: {e}")
|
114 |
+
return None
|
115 |
+
|
116 |
+
class VideoProcessor:
|
117 |
+
"""Class to handle video processing operations"""
|
118 |
+
def __init__(self, model: YOLOModel):
|
119 |
+
self.model = model
|
120 |
+
os.makedirs(Config.TEMP_DIR, exist_ok=True)
|
121 |
+
|
122 |
+
def process_video(self, input_path: str) -> Tuple[bool, Optional[str]]:
|
123 |
+
"""Process video file and return path to processed video"""
|
124 |
+
try:
|
125 |
+
cap = cv2.VideoCapture(input_path)
|
126 |
+
if not cap.isOpened():
|
127 |
+
return False, "Cannot open video file"
|
128 |
+
|
129 |
+
output_path = os.path.join(Config.TEMP_DIR, "processed_video.mp4")
|
130 |
+
self._setup_video_writer(cap, output_path)
|
131 |
+
|
132 |
+
while True:
|
133 |
+
ret, frame = cap.read()
|
134 |
+
if not ret:
|
135 |
+
break
|
136 |
+
|
137 |
+
result = self.model.detect_objects(frame)
|
138 |
+
if result.success:
|
139 |
+
self.writer.write(result.image)
|
140 |
+
|
141 |
+
cap.release()
|
142 |
+
self.writer.release()
|
143 |
+
return True, output_path
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Error processing video: {e}")
|
146 |
+
return False, str(e)
|
147 |
+
|
148 |
+
def _setup_video_writer(self, cap: cv2.VideoCapture, output_path: str):
|
149 |
+
"""Set up video writer with input video properties"""
|
150 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
151 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
152 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
153 |
+
fourcc = cv2.VideoWriter_fourcc(*Config.VIDEO_OUTPUT_FORMAT)
|
154 |
+
self.writer = cv2.VideoWriter(
|
155 |
+
output_path,
|
156 |
+
fourcc,
|
157 |
+
fps,
|
158 |
+
(frame_width, frame_height)
|
159 |
+
)
|
160 |
+
|
161 |
+
def download_youtube_video(youtube_url: str) -> Optional[str]:
|
162 |
+
"""Download YouTube video and return path to downloaded file"""
|
163 |
+
try:
|
164 |
+
temp_dir = tempfile.gettempdir()
|
165 |
+
output_path = os.path.join(temp_dir, 'downloaded_video.mp4')
|
166 |
+
ydl_opts = {
|
167 |
+
'format': 'best',
|
168 |
+
'outtmpl': output_path
|
169 |
+
}
|
170 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
171 |
+
ydl.download([youtube_url])
|
172 |
+
return output_path
|
173 |
+
except Exception as e:
|
174 |
+
logger.error(f"Failed to retrieve video from YouTube: {e}")
|
175 |
+
return None
|
176 |
+
|
177 |
+
def main():
|
178 |
+
"""Main application function"""
|
179 |
+
st.title("MULTIMEDIA OBJECT DETECTION USING YOLO")
|
180 |
+
|
181 |
+
# Model selection with description
|
182 |
+
st.subheader("Model Selection")
|
183 |
+
model_choice = st.selectbox(
|
184 |
+
"Select YOLO Model",
|
185 |
+
options=Config.AVAILABLE_MODELS,
|
186 |
+
index=Config.AVAILABLE_MODELS.index(Config.DEFAULT_MODEL),
|
187 |
+
format_func=lambda x: f"{x} - {Config.YOLO_MODELS[x]}"
|
188 |
+
)
|
189 |
+
|
190 |
+
# Display model capabilities
|
191 |
+
model_type = "Detection"
|
192 |
+
if "pose" in model_choice:
|
193 |
+
model_type = "Pose Estimation"
|
194 |
+
st.info("This model will detect and estimate human poses in the image/video.")
|
195 |
+
elif "seg" in model_choice:
|
196 |
+
model_type = "Instance Segmentation"
|
197 |
+
st.info("This model will perform instance segmentation, creating precise masks for detected objects.")
|
198 |
+
else:
|
199 |
+
st.info("This model will detect and classify objects with bounding boxes.")
|
200 |
+
|
201 |
+
# Initialize model and processors
|
202 |
+
model = YOLOModel(model_choice)
|
203 |
+
image_processor = ImageProcessor(model)
|
204 |
+
video_processor = VideoProcessor(model)
|
205 |
+
|
206 |
+
tabs = st.tabs(["Image Detection", "Video Detection"])
|
207 |
+
|
208 |
+
with tabs[0]:
|
209 |
+
st.header("Image Detection")
|
210 |
+
input_choice = st.radio("Select Input Method", ["Upload", "URL"])
|
211 |
+
|
212 |
+
if input_choice == "Upload":
|
213 |
+
uploaded_image = st.file_uploader(
|
214 |
+
"Upload Image",
|
215 |
+
type=Config.ALLOWED_IMAGE_TYPES
|
216 |
+
)
|
217 |
+
if uploaded_image is not None:
|
218 |
+
image = Image.open(uploaded_image)
|
219 |
+
result = image_processor.process_image(image)
|
220 |
+
if result.success:
|
221 |
+
st.image(result.image, caption="Processed Image", use_container_width=True)
|
222 |
+
else:
|
223 |
+
st.error(result.error_message)
|
224 |
+
|
225 |
+
elif input_choice == "URL":
|
226 |
+
image_url = st.text_input("Image URL")
|
227 |
+
if image_url:
|
228 |
+
result = image_processor.process_image(image_url)
|
229 |
+
if result.success:
|
230 |
+
st.image(result.image, caption="Processed Image", use_container_width=True)
|
231 |
+
else:
|
232 |
+
st.error(result.error_message)
|
233 |
+
|
234 |
+
with tabs[1]:
|
235 |
+
st.header("Video Detection")
|
236 |
+
video_choice = st.radio("Select Input Method", ["Upload", "YouTube"])
|
237 |
+
|
238 |
+
if video_choice == "Upload":
|
239 |
+
uploaded_video = st.file_uploader(
|
240 |
+
"Upload Local Video",
|
241 |
+
type=Config.ALLOWED_VIDEO_TYPES
|
242 |
+
)
|
243 |
+
if uploaded_video is not None:
|
244 |
+
input_video_path = os.path.join(Config.TEMP_DIR, uploaded_video.name)
|
245 |
+
with open(input_video_path, "wb") as f:
|
246 |
+
f.write(uploaded_video.read())
|
247 |
+
|
248 |
+
success, result = video_processor.process_video(input_video_path)
|
249 |
+
if success:
|
250 |
+
st.video(result)
|
251 |
+
else:
|
252 |
+
st.error(result)
|
253 |
+
|
254 |
+
elif video_choice == "YouTube":
|
255 |
+
video_url = st.text_input("YouTube Video URL")
|
256 |
+
if video_url:
|
257 |
+
input_video_path = download_youtube_video(video_url)
|
258 |
+
if input_video_path:
|
259 |
+
success, result = video_processor.process_video(input_video_path)
|
260 |
+
if success:
|
261 |
+
st.video(result)
|
262 |
+
else:
|
263 |
+
st.error(result)
|
264 |
+
|
265 |
+
if __name__ == "__main__":
|
266 |
+
main()
|
config.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict
|
2 |
+
|
3 |
+
class Config:
|
4 |
+
# Model configurations with descriptions
|
5 |
+
YOLO_MODELS = {
|
6 |
+
"yolov8n.pt": "YOLOv8 Nano - Fastest and smallest model, best for CPU/edge devices",
|
7 |
+
"yolov8s.pt": "YOLOv8 Small - Good balance of speed and accuracy",
|
8 |
+
"yolov8m.pt": "YOLOv8 Medium - Better accuracy, still reasonable speed",
|
9 |
+
"yolov8l.pt": "YOLOv8 Large - High accuracy, slower speed",
|
10 |
+
"yolov8x.pt": "YOLOv8 XLarge - Highest accuracy, slowest speed",
|
11 |
+
# Pose estimation models
|
12 |
+
"yolov8n-pose.pt": "YOLOv8 Nano Pose - Fast pose estimation",
|
13 |
+
"yolov8s-pose.pt": "YOLOv8 Small Pose - Balanced pose estimation",
|
14 |
+
"yolov8m-pose.pt": "YOLOv8 Medium Pose - Accurate pose estimation",
|
15 |
+
"yolov8l-pose.pt": "YOLOv8 Large Pose - High accuracy pose estimation",
|
16 |
+
"yolov8x-pose.pt": "YOLOv8 XLarge Pose - Most accurate pose estimation",
|
17 |
+
# Segmentation models
|
18 |
+
"yolov8n-seg.pt": "YOLOv8 Nano Segmentation - Fast instance segmentation",
|
19 |
+
"yolov8s-seg.pt": "YOLOv8 Small Segmentation - Balanced segmentation",
|
20 |
+
"yolov8m-seg.pt": "YOLOv8 Medium Segmentation - Accurate segmentation",
|
21 |
+
"yolov8l-seg.pt": "YOLOv8 Large Segmentation - High accuracy segmentation",
|
22 |
+
"yolov8x-seg.pt": "YOLOv8 XLarge Segmentation - Most accurate segmentation"
|
23 |
+
}
|
24 |
+
|
25 |
+
AVAILABLE_MODELS: List[str] = list(YOLO_MODELS.keys())
|
26 |
+
DEFAULT_MODEL: str = "yolov8s.pt"
|
27 |
+
|
28 |
+
# File configurations
|
29 |
+
ALLOWED_IMAGE_TYPES: List[str] = ["jpg", "jpeg", "png"]
|
30 |
+
ALLOWED_VIDEO_TYPES: List[str] = ["mp4", "mov", "avi"]
|
31 |
+
|
32 |
+
# Video processing
|
33 |
+
TEMP_DIR: str = "temp"
|
34 |
+
VIDEO_OUTPUT_FORMAT: str = "mp4v"
|
35 |
+
|
36 |
+
# UI configurations
|
37 |
+
CONFIDENCE_THRESHOLD: float = 0.25 # Lowered for better detection
|
38 |
+
BBOX_COLOR: tuple = (0, 255, 0)
|
39 |
+
FONT_SCALE: float = 0.5
|
40 |
+
FONT_THICKNESS: int = 2
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python>=4.7.0
|
2 |
+
pillow>=9.5.0
|
3 |
+
requests>=2.31.0
|
4 |
+
numpy>=1.24.3
|
5 |
+
ultralytics>=8.0.0
|
6 |
+
streamlit>=1.24.0
|
7 |
+
yt-dlp>=2023.3.4
|