#include #include #include #include #include uint16_t floatToHalf(float value) { uint32_t f = *reinterpret_cast(&value); uint32_t sign = (f >> 31) & 0x0001; uint32_t exp = (f >> 23) & 0x00ff; uint32_t frac = f & 0x007fffff; uint32_t newExp; if (exp == 0) { newExp = 0; } else if (exp < 113) { newExp = 0; frac |= 0x00800000; frac >>= (113 - exp); if (frac & 0x01000000) { newExp = 1; frac = 0; } } else if (exp < 142) { newExp = exp - 112; } else { newExp = 31; frac = 0; } return (sign << 15) | (newExp << 10) | (frac >> 13); } uint32_t packHalf2x16(float x, float y) { uint16_t hx = floatToHalf(x); uint16_t hy = floatToHalf(y); return (uint32_t)hx | ((uint32_t)hy << 16); } void multiplyQuaternion(float *a, float *b, float *result) { result[0] = a[3] * b[1] + a[0] * b[0] + a[1] * b[3] - a[2] * b[2]; result[1] = a[3] * b[2] - a[0] * b[3] + a[1] * b[0] + a[2] * b[1]; result[2] = a[3] * b[3] + a[0] * b[2] - a[1] * b[1] + a[2] * b[0]; result[3] = a[3] * b[0] - a[0] * b[1] - a[1] * b[2] - a[2] * b[3]; } void quaternionToMatrix3(float *q, float *result) { result[0] = 1 - 2 * q[1] * q[1] - 2 * q[2] * q[2]; result[1] = 2 * q[0] * q[1] - 2 * q[2] * q[3]; result[2] = 2 * q[0] * q[2] + 2 * q[1] * q[3]; result[3] = 2 * q[0] * q[1] + 2 * q[2] * q[3]; result[4] = 1 - 2 * q[0] * q[0] - 2 * q[2] * q[2]; result[5] = 2 * q[1] * q[2] - 2 * q[0] * q[3]; result[6] = 2 * q[0] * q[2] - 2 * q[1] * q[3]; result[7] = 2 * q[1] * q[2] + 2 * q[0] * q[3]; result[8] = 1 - 2 * q[0] * q[0] - 2 * q[1] * q[1]; } void multiplyMatrix3(float *a, float *b, float *result) { result[0] = b[0] * a[0] + b[3] * a[1] + b[6] * a[2]; result[1] = b[1] * a[0] + b[4] * a[1] + b[7] * a[2]; result[2] = b[2] * a[0] + b[5] * a[1] + b[8] * a[2]; result[3] = b[0] * a[3] + b[3] * a[4] + b[6] * a[5]; result[4] = b[1] * a[3] + b[4] * a[4] + b[7] * a[5]; result[5] = b[2] * a[3] + b[5] * a[4] + b[8] * a[5]; result[6] = b[0] * a[6] + b[3] * a[7] + b[6] * a[8]; result[7] = b[1] * a[6] + b[4] * a[7] + b[7] * a[8]; result[8] = b[2] * a[6] + b[5] * a[7] + b[8] * a[8]; } extern "C" { void pack(bool selected, uint32_t vertexCount, float *positions, float *rotations, float *scales, uint8_t *colors, uint8_t *selection, uint32_t *data, float *worldPositions, float *worldRotations, float *worldScales) { float rot[4]; float rotMat[9]; float scaleMat[9] = {0}; float M[9]; float sigma[6]; for (uint32_t i = 0; i < vertexCount; i++) { float x = positions[i * 3 + 0]; float y = positions[i * 3 + 1]; float z = positions[i * 3 + 2]; worldPositions[i * 3 + 0] = x; worldPositions[i * 3 + 1] = y; worldPositions[i * 3 + 2] = z; data[8 * i + 0] = *(uint32_t *)&x; data[8 * i + 1] = *(uint32_t *)&y; data[8 * i + 2] = *(uint32_t *)&z; data[8 * i + 3] = 0; if (selected || selection[i] > 0) { data[8 * i + 3] |= 0x01000000; } uint32_t color = 0; color |= (uint32_t)colors[i * 4 + 0] << 0; color |= (uint32_t)colors[i * 4 + 1] << 8; color |= (uint32_t)colors[i * 4 + 2] << 16; color |= (uint32_t)colors[i * 4 + 3] << 24; data[8 * i + 7] = color; rot[0] = rotations[i * 4 + 1]; rot[1] = rotations[i * 4 + 2]; rot[2] = rotations[i * 4 + 3]; rot[3] = -rotations[i * 4 + 0]; quaternionToMatrix3(rot, rotMat); worldRotations[i * 4 + 0] = rot[0]; worldRotations[i * 4 + 1] = rot[1]; worldRotations[i * 4 + 2] = rot[2]; worldRotations[i * 4 + 3] = rot[3]; scaleMat[0] = scales[i * 3 + 0]; scaleMat[4] = scales[i * 3 + 1]; scaleMat[8] = scales[i * 3 + 2]; worldScales[i * 3 + 0] = scaleMat[0]; worldScales[i * 3 + 1] = scaleMat[4]; worldScales[i * 3 + 2] = scaleMat[8]; multiplyMatrix3(scaleMat, rotMat, M); sigma[0] = M[0] * M[0] + M[3] * M[3] + M[6] * M[6]; sigma[1] = M[0] * M[1] + M[3] * M[4] + M[6] * M[7]; sigma[2] = M[0] * M[2] + M[3] * M[5] + M[6] * M[8]; sigma[3] = M[1] * M[1] + M[4] * M[4] + M[7] * M[7]; sigma[4] = M[1] * M[2] + M[4] * M[5] + M[7] * M[8]; sigma[5] = M[2] * M[2] + M[5] * M[5] + M[8] * M[8]; data[8 * i + 4] = packHalf2x16(4 * sigma[0], 4 * sigma[1]); data[8 * i + 5] = packHalf2x16(4 * sigma[2], 4 * sigma[3]); data[8 * i + 6] = packHalf2x16(4 * sigma[4], 4 * sigma[5]); } } }