File size: 6,924 Bytes
c6379f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf380c
c6379f3
 
 
 
 
2bf380c
 
 
c6379f3
 
 
 
 
1a47edb
c6379f3
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf380c
 
 
c6379f3
 
2bf380c
 
c6379f3
 
 
 
 
 
2bf380c
c6379f3
2bf380c
 
 
c6379f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf380c
c6379f3
2bf380c
 
 
 
c6379f3
 
2bf380c
c6379f3
 
 
2bf380c
 
 
c6379f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310a76b
c6379f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bf380c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from datetime import date
from datetime import datetime
import re

import numpy as np  
import pandas as pd 
from PIL import Image
import plotly.express as px  
import plotly.graph_objects as go
import streamlit as st  
import time

from plotly.subplots import make_subplots

# Read CSV file into pandas and extract timestamp data
# dfSentiment = ### YOUR LINE OF CODE HERE
dfSentiment = pd.read_csv('final_sentiment_data.csv')
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()]

# Multi-select columns to build chart
col_list = dfSentiment.columns.tolist()

r_ticker = re.compile(".*ticker")
ticker_cols = list(['FORD', 'TSLA'])


r_sentiment = re.compile(".*sentiment")
sentiment_cols = list(filter(r_sentiment.match, col_list))

r_post = re.compile(".*post")
post_list = list(filter(r_post.match, col_list))


r_perc= re.compile(".*perc")
perc_list = list(filter(r_perc.match, col_list))

r_close = re.compile(".*close")
close_list = list(filter(r_close.match, col_list))

r_volume = re.compile(".*volume")
volume_list = list(filter(r_volume.match, col_list))

sentiment_cols = sentiment_cols + post_list
stocks_cols = close_list + volume_list




# Config for page
st.set_page_config(
    page_title= 'TSLA Stock Sentiment Analyzer with Reddit comments',
    page_icon='🚙',
    layout='wide',
)

with st.sidebar:
    # FourthBrain logo to sidebar
    fourthbrain_logo = Image.open('./images/fourthbrain_logo.png')
    st.image([fourthbrain_logo], width=200)

    # Types of Stock
    stock_ticker_select = st.selectbox('Select Stock Ticker', ticker_cols)
    
    # Date selection filters
    start_date_filter = st.date_input(
        'Start Date',
        min(dfSentiment['timestamp']),
        min_value=min(dfSentiment['timestamp']),
        max_value=max(dfSentiment['timestamp'])
        )
        

    end_date_filter = st.date_input(
        'End Date',
        max(dfSentiment['timestamp']),
        min_value=min(dfSentiment['timestamp']),
        max_value=max(dfSentiment['timestamp'])
        )

    sentiment_select = st.selectbox('Select Sentiment/Reddit Data', sentiment_cols)
    stock_select = st.selectbox('Select Stock Data', stocks_cols)

# Banner with TSLA and Reddit images
tsla_logo = Image.open('./images/tsla_logo.png')
ford_logo = Image.open('./images/ford_logo.png')
reddit_logo = Image.open('./images/reddit_logo.png')

spotlight_logo = tsla_logo if stock_ticker_select == 'TSLA' else ford_logo

st.image([spotlight_logo, reddit_logo], width=150)

# dashboard title
st.title(stock_ticker_select + ' Subreddit and Stock Price')

## dataframe filter
# start date

dfSentiment = dfSentiment[dfSentiment['stock_ticker'] == stock_ticker_select] 

dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)]
    
# end date
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)]
dfSentiment = dfSentiment.reset_index(drop=True)


# creating a single-element container
placeholder = st.empty()

# near real-time / live feed simulation
for i in range(1, len(dfSentiment)-1):

    # creating KPIs
    last_close =  dfSentiment['close'][i]
    last_close_lag1 = dfSentiment['close'][i-1]
    last_sentiment = dfSentiment['sentiment_score'][i]
    last_sentiment_lag1 = dfSentiment['sentiment_score'][i-1]


    with placeholder.container():

        # create columns
        kpi1, kpi2 = st.columns(2)

        # fill in those three columns with respective metrics or KPIs
        kpi1.metric(
            label='Sentiment Score',
            value=round(last_sentiment, 3),
            delta=round(last_sentiment_lag1, 3),
        )
        
        kpi2.metric(
            label='Last Closing Price',
            value=round(last_close),
            delta=round(last_close - last_close_lag1)
        )
        

        # create two columns for charts
        fig_col1, fig_col2 = st.columns(2)
        
        with fig_col1:
            # Add traces
            fig=make_subplots(specs=[[{"secondary_y":True}]])


            fig.add_trace(                               
                go.Scatter(                          
                x=dfSentiment['timestamp'][0:i],
                y=dfSentiment[sentiment_select][0:i],
                name=sentiment_select,
                mode='lines',                            
                hoverinfo='none',                        
                )              
            )

            if sentiment_select.startswith('perc') == True:
                yaxis_label = '% Change Sentiment'

            elif sentiment_select in sentiment_cols:
                yaxis_label = 'Sentiment Score'

            elif sentiment_select in post_list:
                yaxis_label = 'Volume'

            fig.layout.yaxis.title=yaxis_label
                                          
            if stock_select.startswith('perc') == True:
                fig.add_trace(                               
                    go.Scatter(                          
                    x=dfSentiment['timestamp'][0:i],
                    y=dfSentiment[stock_select][0:i],
                    name=stock_select,
                    mode='lines',                            
                    hoverinfo='none', 
                    yaxis='y2',                    
                    ) 
                )
                fig.layout.yaxis2.title='% Change Stock Price ($US)'
            
            elif stock_select == 'volume':
                fig.add_trace(                               
                    go.Scatter(                          
                    x=dfSentiment['timestamp'][0:i],
                    y=dfSentiment[stock_select][0:i],
                    name=stock_select,
                    mode='lines',                            
                    hoverinfo='none', 
                    yaxis='y2',                    
                    ) 
                )
                
                fig.layout.yaxis2.title="Shares Traded"


            else:
                fig.add_trace(                               
                    go.Scatter(                          
                    x=dfSentiment['timestamp'][0:i],
                    y=dfSentiment[stock_select][0:i],
                    name=stock_select,
                    mode='lines',                            
                    hoverinfo='none', 
                    yaxis='y2',                    
                    ) 
                )

                fig.layout.yaxis2.title='Stock Price ($USD)'


            fig.layout.xaxis.title='Timestamp'

            # write the figure throught streamlit
            st.write(fig)


        st.markdown('### Detailed Data View')
        st.dataframe(dfSentiment.iloc[:, 1:][0:i])
        time.sleep(1)