Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,77 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from PIL import Image
|
| 3 |
-
from RealESRGAN import RealESRGAN
|
| 4 |
-
import gradio as gr
|
| 5 |
-
|
| 6 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 7 |
-
model2 = RealESRGAN(device, scale=2)
|
| 8 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
|
| 9 |
-
model4 = RealESRGAN(device, scale=4)
|
| 10 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
| 11 |
-
model8 = RealESRGAN(device, scale=8)
|
| 12 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def inference(image, size):
|
| 16 |
-
global model2
|
| 17 |
-
global model4
|
| 18 |
-
global model8
|
| 19 |
-
if image is None:
|
| 20 |
-
raise gr.Error("Image not uploaded")
|
| 21 |
-
|
| 22 |
-
width, height = image.size
|
| 23 |
-
if width >= 5000 or height >= 5000:
|
| 24 |
-
raise gr.Error("The image is too large.")
|
| 25 |
-
|
| 26 |
-
if torch.cuda.is_available():
|
| 27 |
-
torch.cuda.empty_cache()
|
| 28 |
-
|
| 29 |
-
if size == '2x':
|
| 30 |
-
try:
|
| 31 |
-
result = model2.predict(image.convert('RGB'))
|
| 32 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 33 |
-
print(e)
|
| 34 |
-
model2 = RealESRGAN(device, scale=2)
|
| 35 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
| 36 |
-
result = model2.predict(image.convert('RGB'))
|
| 37 |
-
elif size == '4x':
|
| 38 |
-
try:
|
| 39 |
-
result = model4.predict(image.convert('RGB'))
|
| 40 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 41 |
-
print(e)
|
| 42 |
-
model4 = RealESRGAN(device, scale=4)
|
| 43 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
| 44 |
-
result = model2.predict(image.convert('RGB'))
|
| 45 |
-
else:
|
| 46 |
-
try:
|
| 47 |
-
result = model8.predict(image.convert('RGB'))
|
| 48 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 49 |
-
print(e)
|
| 50 |
-
model8 = RealESRGAN(device, scale=8)
|
| 51 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
| 52 |
-
result = model2.predict(image.convert('RGB'))
|
| 53 |
-
|
| 54 |
-
print(f"Image size ({device}): {size} ... OK")
|
| 55 |
-
return result
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
|
| 59 |
-
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
|
| 60 |
-
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
gr.Interface(inference,
|
| 64 |
-
[gr.Image(type="pil"),
|
| 65 |
-
gr.Radio(['2x', '4x', '8x'],
|
| 66 |
-
type="value",
|
| 67 |
-
value='2x',
|
| 68 |
-
label='Resolution model')],
|
| 69 |
-
gr.Image(type="pil", label="Output"),
|
| 70 |
-
title=title,
|
| 71 |
-
description=description,
|
| 72 |
-
article=article,
|
| 73 |
-
examples=[['groot.jpeg', "2x"]],
|
| 74 |
-
allow_flagging='never',
|
| 75 |
-
cache_examples=False,
|
| 76 |
-
).queue(api_open=False).launch(show_error=True, show_api=False)
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|