Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from PIL import Image
|
3 |
-
from RealESRGAN import RealESRGAN
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
-
model2 = RealESRGAN(device, scale=2)
|
8 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
|
9 |
-
model4 = RealESRGAN(device, scale=4)
|
10 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
11 |
-
model8 = RealESRGAN(device, scale=8)
|
12 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
13 |
-
|
14 |
-
|
15 |
-
def inference(image, size):
|
16 |
-
global model2
|
17 |
-
global model4
|
18 |
-
global model8
|
19 |
-
if image is None:
|
20 |
-
raise gr.Error("Image not uploaded")
|
21 |
-
|
22 |
-
width, height = image.size
|
23 |
-
if width >= 5000 or height >= 5000:
|
24 |
-
raise gr.Error("The image is too large.")
|
25 |
-
|
26 |
-
if torch.cuda.is_available():
|
27 |
-
torch.cuda.empty_cache()
|
28 |
-
|
29 |
-
if size == '2x':
|
30 |
-
try:
|
31 |
-
result = model2.predict(image.convert('RGB'))
|
32 |
-
except torch.cuda.OutOfMemoryError as e:
|
33 |
-
print(e)
|
34 |
-
model2 = RealESRGAN(device, scale=2)
|
35 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
36 |
-
result = model2.predict(image.convert('RGB'))
|
37 |
-
elif size == '4x':
|
38 |
-
try:
|
39 |
-
result = model4.predict(image.convert('RGB'))
|
40 |
-
except torch.cuda.OutOfMemoryError as e:
|
41 |
-
print(e)
|
42 |
-
model4 = RealESRGAN(device, scale=4)
|
43 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
44 |
-
result = model2.predict(image.convert('RGB'))
|
45 |
-
else:
|
46 |
-
try:
|
47 |
-
result = model8.predict(image.convert('RGB'))
|
48 |
-
except torch.cuda.OutOfMemoryError as e:
|
49 |
-
print(e)
|
50 |
-
model8 = RealESRGAN(device, scale=8)
|
51 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
52 |
-
result = model2.predict(image.convert('RGB'))
|
53 |
-
|
54 |
-
print(f"Image size ({device}): {size} ... OK")
|
55 |
-
return result
|
56 |
-
|
57 |
-
|
58 |
-
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
|
59 |
-
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
|
60 |
-
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"
|
61 |
-
|
62 |
-
|
63 |
-
gr.Interface(inference,
|
64 |
-
[gr.Image(type="pil"),
|
65 |
-
gr.Radio(['2x', '4x', '8x'],
|
66 |
-
type="value",
|
67 |
-
value='2x',
|
68 |
-
label='Resolution model')],
|
69 |
-
gr.Image(type="pil", label="Output"),
|
70 |
-
title=title,
|
71 |
-
description=description,
|
72 |
-
article=article,
|
73 |
-
examples=[['groot.jpeg', "2x"]],
|
74 |
-
allow_flagging='never',
|
75 |
-
cache_examples=False,
|
76 |
-
).queue(api_open=False).launch(show_error=True, show_api=False)
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|