Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -51,9 +51,11 @@ model.to(device)
|
|
| 51 |
|
| 52 |
### PeRFlow-T2I
|
| 53 |
# pipe_t2i = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-8", torch_dtype=torch.float16, safety_checker=None)
|
| 54 |
-
pipe_t2i = StableDiffusionPipeline.from_pretrained("stablediffusionapi/disney-pixar-cartoon", torch_dtype=torch.float16, safety_checker=None)
|
| 55 |
-
delta_weights = UNet2DConditionModel.from_pretrained("hansyan/piecewise-rectified-flow-delta-weights", torch_dtype=torch.float16, variant="v0-1",).state_dict()
|
| 56 |
-
pipe_t2i = merge_delta_weights_into_unet(pipe_t2i, delta_weights)
|
|
|
|
|
|
|
| 57 |
pipe_t2i.scheduler = PeRFlowScheduler.from_config(pipe_t2i.scheduler.config, prediction_type="epsilon", num_time_windows=4)
|
| 58 |
pipe_t2i.to('cuda:0', torch.float16)
|
| 59 |
|
|
@@ -70,16 +72,18 @@ def generate(text, seed):
|
|
| 70 |
return image
|
| 71 |
|
| 72 |
setup_seed(int(seed))
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
samples = pipe_t2i(
|
| 75 |
prompt = [text],
|
| 76 |
-
negative_prompt = [
|
| 77 |
height = 512,
|
| 78 |
width = 512,
|
| 79 |
-
# num_inference_steps =
|
| 80 |
-
# guidance_scale =
|
| 81 |
-
num_inference_steps =
|
| 82 |
-
guidance_scale = 7,
|
| 83 |
output_type = 'pt',
|
| 84 |
).images
|
| 85 |
samples = torch.nn.functional.interpolate(samples, size=768, mode='bilinear')
|
|
@@ -104,8 +108,6 @@ def render(image, mc_resolution=256, formats=["obj"]):
|
|
| 104 |
rv.append(mesh_path.name)
|
| 105 |
return rv[0]
|
| 106 |
|
| 107 |
-
# # warm up
|
| 108 |
-
# _ = generate("a bird", 42)
|
| 109 |
|
| 110 |
# layout
|
| 111 |
css = """
|
|
@@ -129,7 +131,7 @@ with gr.Blocks(title="TripoSR", css=css) as interface:
|
|
| 129 |
|
| 130 |
### [PeRFlow](https://github.com/magic-research/piecewise-rectified-flow)-T2I + [TripoSR](https://github.com/VAST-AI-Research/TripoSR)
|
| 131 |
|
| 132 |
-
Two-stage synthesis: 1) generating images by PeRFlow-T2I
|
| 133 |
"""
|
| 134 |
)
|
| 135 |
|
|
@@ -146,6 +148,21 @@ with gr.Blocks(title="TripoSR", css=css) as interface:
|
|
| 146 |
with gr.Row():
|
| 147 |
textbox = gr.Textbox(label="Input Prompt", value="a colorful bird")
|
| 148 |
seed = gr.Textbox(label="Random Seed", value=42)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
# activate
|
| 151 |
textbox.submit(
|
|
|
|
| 51 |
|
| 52 |
### PeRFlow-T2I
|
| 53 |
# pipe_t2i = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-8", torch_dtype=torch.float16, safety_checker=None)
|
| 54 |
+
# pipe_t2i = StableDiffusionPipeline.from_pretrained("stablediffusionapi/disney-pixar-cartoon", torch_dtype=torch.float16, safety_checker=None)
|
| 55 |
+
# delta_weights = UNet2DConditionModel.from_pretrained("hansyan/piecewise-rectified-flow-delta-weights", torch_dtype=torch.float16, variant="v0-1",).state_dict()
|
| 56 |
+
# pipe_t2i = merge_delta_weights_into_unet(pipe_t2i, delta_weights)
|
| 57 |
+
|
| 58 |
+
pipe_t2i = StableDiffusionPipeline.from_pretrained("hansyan/perflow-sd15-disney", torch_dtype=torch.float16, safety_checker=None)
|
| 59 |
pipe_t2i.scheduler = PeRFlowScheduler.from_config(pipe_t2i.scheduler.config, prediction_type="epsilon", num_time_windows=4)
|
| 60 |
pipe_t2i.to('cuda:0', torch.float16)
|
| 61 |
|
|
|
|
| 72 |
return image
|
| 73 |
|
| 74 |
setup_seed(int(seed))
|
| 75 |
+
prompt_prefix = "high quality, best quality, masterpiece; "
|
| 76 |
+
neg_prompt = "EasyNegative, drawn by bad-artist, sketch by bad-artist-anime, (bad_prompt:0.8), (artist name, signature, watermark:1.4), (ugly:1.2), (worst quality, poor details:1.4), bad-hands-5, badhandv4, blurry"
|
| 77 |
+
text = prompt_prefix + text
|
| 78 |
samples = pipe_t2i(
|
| 79 |
prompt = [text],
|
| 80 |
+
negative_prompt = [neg_prompt],
|
| 81 |
height = 512,
|
| 82 |
width = 512,
|
| 83 |
+
# num_inference_steps = 6,
|
| 84 |
+
# guidance_scale = 7.5,
|
| 85 |
+
num_inference_steps = 8,
|
| 86 |
+
guidance_scale = 7.5,
|
| 87 |
output_type = 'pt',
|
| 88 |
).images
|
| 89 |
samples = torch.nn.functional.interpolate(samples, size=768, mode='bilinear')
|
|
|
|
| 108 |
rv.append(mesh_path.name)
|
| 109 |
return rv[0]
|
| 110 |
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# layout
|
| 113 |
css = """
|
|
|
|
| 131 |
|
| 132 |
### [PeRFlow](https://github.com/magic-research/piecewise-rectified-flow)-T2I + [TripoSR](https://github.com/VAST-AI-Research/TripoSR)
|
| 133 |
|
| 134 |
+
Two-stage synthesis: 1) generating images by PeRFlow-T2I; 2) rendering 3D assests.
|
| 135 |
"""
|
| 136 |
)
|
| 137 |
|
|
|
|
| 148 |
with gr.Row():
|
| 149 |
textbox = gr.Textbox(label="Input Prompt", value="a colorful bird")
|
| 150 |
seed = gr.Textbox(label="Random Seed", value=42)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
gr.Markdown(
|
| 154 |
+
"""
|
| 155 |
+
Examples:
|
| 156 |
+
- a policeman
|
| 157 |
+
- a robot, close-up
|
| 158 |
+
- a red car, side view
|
| 159 |
+
- a blue mug
|
| 160 |
+
- a burger
|
| 161 |
+
- a tea pot
|
| 162 |
+
- a wooden chair
|
| 163 |
+
- an amazing unicorn
|
| 164 |
+
"""
|
| 165 |
+
)
|
| 166 |
|
| 167 |
# activate
|
| 168 |
textbox.submit(
|