import nbformat from nbformat.v4 import new_notebook, new_markdown_cell, new_code_cell from nbconvert import HTMLExporter from huggingface_hub import InferenceClient from e2b_code_interpreter import Sandbox from transformers import AutoTokenizer from traitlets.config import Config import re config = Config() html_exporter = HTMLExporter(config=config, template_name="classic") # Constants MAX_TURNS = 10 with open("llama3_template.jinja", "r") as f: llama_template = f.read() def parse_exec_result_nb(execution): """Convert an E2B Execution object to Jupyter notebook cell output format""" outputs = [] if execution.logs.stdout: outputs.append({ 'output_type': 'stream', 'name': 'stdout', 'text': ''.join(execution.logs.stdout) }) if execution.logs.stderr: outputs.append({ 'output_type': 'stream', 'name': 'stderr', 'text': ''.join(execution.logs.stderr) }) if execution.error: outputs.append({ 'output_type': 'error', 'ename': execution.error.name, 'evalue': execution.error.value, 'traceback': [line for line in execution.error.traceback.split('\n')] }) for result in execution.results: output = { 'output_type': 'execute_result' if result.is_main_result else 'display_data', 'metadata': {}, 'data': {} } if result.text: output['data']['text/plain'] = [result.text] # Array for text/plain if result.html: output['data']['text/html'] = result.html if result.png: output['data']['image/png'] = result.png if result.svg: output['data']['image/svg+xml'] = result.svg if result.jpeg: output['data']['image/jpeg'] = result.jpeg if result.pdf: output['data']['application/pdf'] = result.pdf if result.latex: output['data']['text/latex'] = result.latex if result.json: output['data']['application/json'] = result.json if result.javascript: output['data']['application/javascript'] = result.javascript if result.is_main_result and execution.execution_count is not None: output['execution_count'] = execution.execution_count if output['data']: outputs.append(output) return outputs system_template = """\
System:
{}
""" user_template = """
User: {}
""" header_message = """

Let a LLM agent write and execute code inside a notebook!

""" bad_html_bad = """input[type="file"] { display: block; }""" def create_base_notebook(messages): base_notebook = { "metadata": { "kernel_info": {"name": "python3"}, "language_info": { "name": "python", "version": "3.12", }, }, "nbformat": 4, "nbformat_minor": 0, "cells": [] } base_notebook["cells"].append({ "cell_type": "markdown", "metadata": {}, "source": header_message }) if len(messages)==0: base_notebook["cells"].append({ "cell_type": "code", "execution_count": None, "metadata": {}, "source": "", "outputs": [] }) code_cell_counter = 0 for message in messages: if message["role"] == "system": text = system_template.format(message["content"].replace('\n', '
')) base_notebook["cells"].append({ "cell_type": "markdown", "metadata": {}, "source": text }) elif message["role"] == "user": text = user_template.format(message["content"].replace('\n', '
')) base_notebook["cells"].append({ "cell_type": "markdown", "metadata": {}, "source": text }) elif message["role"] == "assistant" and "tool_calls" in message: base_notebook["cells"].append({ "cell_type": "code", "execution_count": None, "metadata": {}, "source": message["content"], "outputs": [] }) elif message["role"] == "ipython": code_cell_counter +=1 base_notebook["cells"][-1]["outputs"] = message["nbformat"] base_notebook["cells"][-1]["execution_count"] = code_cell_counter elif message["role"] == "assistant" and "tool_calls" not in message: base_notebook["cells"].append({ "cell_type": "markdown", "metadata": {}, "source": message["content"] }) else: raise ValueError(message) return base_notebook, code_cell_counter def execute_code(sbx, code): execution = sbx.run_code(code, on_stdout=lambda data: print('stdout:', data)) output = "" if len(execution.logs.stdout) > 0: output += "\n".join(execution.logs.stdout) if len(execution.logs.stderr) > 0: output += "\n".join(execution.logs.stderr) if execution.error is not None: output += execution.error.traceback return output, execution def parse_exec_result_llm(execution): output = "" if len(execution.logs.stdout) > 0: output += "\n".join(execution.logs.stdout) if len(execution.logs.stderr) > 0: output += "\n".join(execution.logs.stderr) if execution.error is not None: output += execution.error.traceback return output def update_notebook_display(notebook_data): notebook = nbformat.from_dict(notebook_data) notebook_body, _ = html_exporter.from_notebook_node(notebook) notebook_body = notebook_body.replace(bad_html_bad, "") return notebook_body def run_interactive_notebook(model, tokenizer, messages, sbx, max_new_tokens=512): notebook_data, code_cell_counter = create_base_notebook(messages) turns = 0 while turns <= MAX_TURNS: turns += 1 # Generate response using the model text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=max_new_tokens ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response_stream = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Process the full response at once parts = re.split(r'(```python[\s\S]*?```)', response_stream) for part in parts: if part.strip(): if part.startswith('```python'): # Extract code without the markers code = re.sub(r'```python\n|```', '', part).strip() code_cell_counter += 1 # Add code cell notebook_data["cells"].append({ "cell_type": "code", "execution_count": code_cell_counter, "metadata": {}, "source": code, "outputs": [] }) # Execute code exec_result, execution = execute_code(sbx, code) messages.append({ "role": "assistant", "content": code, "tool_calls": [{ "type": "function", "function": { "name": "code_interpreter", "arguments": {"code": code} } }] }) messages.append({ "role": "ipython", "content": parse_exec_result_llm(execution), "nbformat": parse_exec_result_nb(execution) }) # Update cell with execution results notebook_data["cells"][-1]["outputs"] = parse_exec_result_nb(execution) else: # Add markdown cell for non-code content notebook_data["cells"].append({ "cell_type": "markdown", "metadata": {}, "source": part.strip() }) messages.append({ "role": "assistant", "content": part.strip() }) # Return the final result yield update_notebook_display(notebook_data), notebook_data, messages break yield update_notebook_display(notebook_data), notebook_data, messages def update_notebook_with_cell(notebook_data, code, output): """Add a code cell and its output to the notebook""" cell = { "cell_type": "code", "execution_count": None, "metadata": {}, "source": code, "outputs": [{ "output_type": "stream", "name": "stdout", "text": str(output) }] if output else [] } notebook_data['cells'].append(cell) return notebook_data def update_notebook_with_markdown(notebook_data, markdown_text): """Add a markdown cell to the notebook""" cell = { "cell_type": "markdown", "metadata": {}, "source": markdown_text } notebook_data['cells'].append(cell) return notebook_data