Spaces:
Runtime error
Runtime error
File size: 5,267 Bytes
751e7d4 085880a d2daf95 f7a9983 3b5590f 371a048 b98f2e5 085880a d2daf95 f7a9983 d2daf95 d950565 d2daf95 71c83be 5c9a3e1 b98f2e5 0e2ac66 55dbaf1 0e2ac66 77de53d 751e7d4 d2daf95 fcd3706 d2daf95 eacc8e2 b98f2e5 371a048 f7a9983 3b5590f 4c74a4e 3b5590f 371a048 d2daf95 371a048 2275821 0f3cefd 371a048 5d46926 371a048 b98f2e5 371a048 b98f2e5 371a048 6772cf6 5c9a3e1 f52ce74 5c9a3e1 e1952ef d2daf95 6772cf6 a29437c 6772cf6 a29437c 6772cf6 085880a a3b4442 f52ce74 d2daf95 b5a423e 0eab080 d2daf95 0eab080 d2daf95 e1952ef 0eab080 10c6d44 7729daa d2daf95 7729daa d2daf95 fcd3706 d2daf95 fcd3706 d2daf95 185eab3 908b38b d2daf95 085880a 6159031 556491b b98f2e5 e1952ef 5c9a3e1 085880a 4dd59d6 371a048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import gradio as gr
from gradio.utils import get_space
from e2b_code_interpreter import Sandbox
from pathlib import Path
from peft import PeftModel
from transformers import AutoTokenizer,AutoModelForCausalLM
import json
if not get_space():
try:
from dotenv import load_dotenv
load_dotenv()
except (ImportError, ModuleNotFoundError):
pass
from utils import (
run_interactive_notebook,
create_base_notebook,
update_notebook_display,
)
E2B_API_KEY = os.environ["E2B_API_KEY"]
DEFAULT_MAX_TOKENS = 512
SANDBOXES = {}
TMP_DIR = './tmp/'
if not os.path.exists(TMP_DIR):
os.makedirs(TMP_DIR)
notebook_data = create_base_notebook([])[0]
with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
with open("ds-system-prompt.txt", "r") as f:
DEFAULT_SYSTEM_PROMPT = f.read()
def execute_jupyter_agent(
system_prompt, user_input, max_new_tokens, model_name, files, message_history, request: gr.Request
):
if request.session_hash not in SANDBOXES:
SANDBOXES[request.session_hash] = Sandbox(api_key=E2B_API_KEY)
sbx = SANDBOXES[request.session_hash]
save_dir = os.path.join(TMP_DIR, request.session_hash)
os.makedirs(save_dir, exist_ok=True)
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B-Instruct")
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-Coder-7B-Instruct", torch_dtype='auto'
).eval()
# # Load the LoRA adapter and move the model to GPU
model = PeftModel.from_pretrained(
model,
model_name,
device_map="auto", # Automatically allocate model layers to available devices
trust_remote_code=True
).eval()
filenames = []
if files is not None:
for filepath in files:
filpath = Path(filepath)
with open(filepath, "rb") as file:
print(f"uploading {filepath}...")
sbx.files.write(filpath.name, file)
filenames.append(filpath.name)
# Initialize message_history if it doesn't exist
if len(message_history) == 0:
message_history.append(
{
"role": "system",
"content": system_prompt.format("- " + "\n- ".join(filenames)),
}
)
message_history.append({"role": "user", "content": user_input})
print("history:", message_history)
for notebook_html, notebook_data, messages in run_interactive_notebook(
model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens
):
message_history = messages
yield notebook_html, message_history, TMP_DIR+"jupyter-agent.ipynb"
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
yield notebook_html, message_history, save_dir
def clear(msg_state):
msg_state = []
return update_notebook_display(create_base_notebook([])[0]), msg_state
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
"""
# Create the interface
with gr.Blocks() as demo:
msg_state = gr.State(value=[])
html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))
user_input = gr.Textbox(
value="Solve the Lotka-Volterra equation and plot the results.", lines=3, label="User input"
)
with gr.Row():
generate_btn = gr.Button("Let's go!")
clear_btn = gr.Button("Clear")
file = gr.File(TMP_DIR+"jupyter-agent.ipynb", label="Download Jupyter Notebook")
with gr.Accordion("Upload files", open=False):
files = gr.File(label="Upload files to use", file_count="multiple")
with gr.Accordion("Advanced Settings", open=False):
system_input = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
elem_classes="input-box",
lines=8,
)
with gr.Row():
max_tokens = gr.Number(
label="Max New Tokens",
value=DEFAULT_MAX_TOKENS,
minimum=128,
maximum=2048,
step=8,
interactive=True,
)
model = gr.Dropdown(
value="bigcomputer/jupycoder-7b-lora-350",
choices=[
"bigcomputer/jupycoder-7b-lora-350",
"Qwen/Qwen2.5-Coder-7B-Instruct"
],
label="Models"
)
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[system_input, user_input, max_tokens, model, files, msg_state],
outputs=[html_output, msg_state, file],
)
clear_btn.click(fn=clear, inputs=[msg_state], outputs=[html_output, msg_state])
demo.load(
fn=None,
inputs=None,
outputs=None,
js=""" () => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
}
"""
)
demo.launch(share=True, ssr_mode=False)
|