File size: 7,972 Bytes
751e7d4
085880a
d2daf95
f7a9983
3b5590f
fcd3706
b98f2e5
fcd3706
085880a
d2daf95
 
 
f7a9983
d2daf95
 
 
d950565
d2daf95
 
 
 
 
fcd3706
 
d2daf95
 
 
 
71c83be
5c9a3e1
b98f2e5
 
 
0e2ac66
55dbaf1
 
 
 
0e2ac66
 
77de53d
fcd3706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751e7d4
d2daf95
fcd3706
d2daf95
eacc8e2
 
 
b98f2e5
 
 
 
 
fcd3706
f7a9983
fcd3706
3b5590f
4c74a4e
 
 
 
 
 
 
3b5590f
fcd3706
d2daf95
fcd3706
 
 
 
2275821
0f3cefd
fcd3706
 
 
5d46926
fcd3706
 
b98f2e5
fcd3706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98f2e5
 
6772cf6
5c9a3e1
f52ce74
5c9a3e1
e1952ef
d2daf95
6772cf6
a29437c
 
 
 
 
 
6772cf6
 
 
a29437c
 
 
 
6772cf6
 
 
085880a
a3b4442
f52ce74
d2daf95
b5a423e
0eab080
d2daf95
0eab080
d2daf95
 
e1952ef
 
 
0eab080
 
 
10c6d44
7729daa
 
 
 
 
 
 
d2daf95
7729daa
 
 
 
 
 
 
 
d2daf95
 
 
 
fcd3706
d2daf95
fcd3706
 
d2daf95
185eab3
908b38b
d2daf95
085880a
6159031
556491b
b98f2e5
e1952ef
 
5c9a3e1
085880a
4dd59d6
 
 
 
 
 
 
 
 
 
 
 
d2daf95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import gradio as gr
from gradio.utils import get_space
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
import re

if not get_space():
    try:
        from dotenv import load_dotenv

        load_dotenv()
    except (ImportError, ModuleNotFoundError):
        pass


from utils import (
    run_interactive_notebook,
    create_base_notebook,
    update_notebook_display,
    update_notebook_with_cell,
    update_notebook_with_markdown,
)

E2B_API_KEY = os.environ["E2B_API_KEY"]
HF_TOKEN = os.environ["HF_TOKEN"]
DEFAULT_MAX_TOKENS = 512
SANDBOXES = {}
TMP_DIR = './tmp/'
if not os.path.exists(TMP_DIR):
    os.makedirs(TMP_DIR)

notebook_data = create_base_notebook([])[0]
with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
        json.dump(notebook_data, f, indent=2)

with open("ds-system-prompt.txt", "r") as f:
    DEFAULT_SYSTEM_PROMPT = f.read()

# Add this constant at the top with other constants
MAX_TURNS = 10

# Replace the client initialization with local model loading
def load_model_and_tokenizer(model_name="bigcomputer/jupycoder-7b-lora-350"):
    if model_name == "bigcomputer/jupycoder-7b-lora-350":
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto"
        )
        tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B-Instruct")
    else:
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            device_map="auto"
        )
        tokenizer = AutoTokenizer.from_pretrained(model_name)
    return model, tokenizer

# Function to extract code and text from model response
def parse_model_response(response_text):
    cells = []
    # Split by code blocks
    parts = re.split(r'(```python[\s\S]*?```)', response_text)
    
    for part in parts:
        if part.strip():
            if part.startswith('```python'):
                # Extract code without the markers
                code = re.sub(r'```python\n|```', '', part).strip()
                cells.append({"type": "code", "content": code})
            else:
                # Regular text becomes markdown
                cells.append({"type": "markdown", "content": part.strip()})
    
    return cells

def execute_jupyter_agent(
    system_prompt, user_input, max_new_tokens, model_name, files, message_history, request: gr.Request
):
    if request.session_hash not in SANDBOXES:
        SANDBOXES[request.session_hash] = Sandbox(api_key=E2B_API_KEY)
    sbx = SANDBOXES[request.session_hash]

    save_dir = os.path.join(TMP_DIR, request.session_hash)
    os.makedirs(save_dir, exist_ok=True)
    save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')

    model, tokenizer = load_model_and_tokenizer(model_name)

    # Handle file uploads
    filenames = []
    if files is not None:
        for filepath in files:
            filpath = Path(filepath)
            with open(filepath, "rb") as file:
                print(f"uploading {filepath}...")
                sbx.files.write(filpath.name, file)
                filenames.append(filpath.name)

    # Initialize conversation
    if len(message_history) == 0:
        message_history.append({
            "role": "system",
            "content": system_prompt.format("- " + "\n- ".join(filenames))
        })
    message_history.append({"role": "user", "content": user_input})

    # Create initial notebook
    notebook_data = create_base_notebook([])
    turn_count = 0

    while turn_count < MAX_TURNS:
        turn_count += 1
        
        # Generate response
        input_text = "\n".join([msg["content"] for msg in message_history])
        inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
        
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=0.7,
        )
        response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

        # Parse response into cells
        cells = parse_model_response(response_text)
        
        # Process each cell
        has_code = False
        for cell in cells:
            if cell["type"] == "code":
                has_code = True
                # Execute code cell
                result = sbx.python.run(cell["content"])
                # Add code cell and output to notebook
                notebook_data = update_notebook_with_cell(notebook_data, cell["content"], result)
                # Add execution result to message history
                message_history.append({
                    "role": "assistant",
                    "content": cell["content"]
                })
                message_history.append({
                    "role": "user",
                    "content": f"Execution result:\n{result}"
                })
            else:
                # Add markdown cell to notebook
                notebook_data = update_notebook_with_markdown(notebook_data, cell["content"])
                message_history.append({
                    "role": "assistant",
                    "content": cell["content"]
                })
            
            # Update display after each cell
            notebook_html = update_notebook_display(notebook_data)
            yield notebook_html, message_history, save_dir

        # If no code was generated or we've reached max turns, stop
        if not has_code or turn_count >= MAX_TURNS:
            break

    # Save final notebook
    with open(save_dir, 'w', encoding='utf-8') as f:
        json.dump(notebook_data, f, indent=2)

def clear(msg_state):
    msg_state = []
    return update_notebook_display(create_base_notebook([])[0]), msg_state


css = """
#component-0 {
    height: 100vh;
    overflow-y: auto;
    padding: 20px;
}

.gradio-container {
    height: 100vh !important;
}

.contain {
    height: 100vh !important;
}
"""


# Create the interface
with gr.Blocks() as demo:
    msg_state = gr.State(value=[])

    html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))
    
    user_input = gr.Textbox(
        value="Solve the Lotka-Volterra equation and plot the results.", lines=3, label="User input"
    )

    with gr.Row():
        generate_btn = gr.Button("Let's go!")
        clear_btn = gr.Button("Clear")
    
    file = gr.File(TMP_DIR+"jupyter-agent.ipynb", label="Download Jupyter Notebook")
    
    with gr.Accordion("Upload files", open=False):
        files = gr.File(label="Upload files to use", file_count="multiple")

    with gr.Accordion("Advanced Settings", open=False):
        system_input = gr.Textbox(
            label="System Prompt",
            value=DEFAULT_SYSTEM_PROMPT,
            elem_classes="input-box",
            lines=8,
        )
        with gr.Row():
            max_tokens = gr.Number(
                label="Max New Tokens",
                value=DEFAULT_MAX_TOKENS,
                minimum=128,
                maximum=2048,
                step=8,
                interactive=True,
            )

            model = gr.Dropdown(
                value="bigcomputer/jupycoder-7b-lora-350",
                choices=[
                    "bigcomputer/jupycoder-7b-lora-350",
                    "Qwen/Qwen2.5-Coder-7B-Instruct"
                ],
                label="Models"
            )

    generate_btn.click(
        fn=execute_jupyter_agent,
        inputs=[system_input, user_input, max_tokens, model, files, msg_state],
        outputs=[html_output, msg_state, file],
    )

    clear_btn.click(fn=clear, inputs=[msg_state], outputs=[html_output, msg_state])

    demo.load(
        fn=None,
        inputs=None,
        outputs=None,
        js=""" () => {
    if (document.querySelectorAll('.dark').length) {
        document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
    }
}
"""
    )

demo.launch(ssr_mode=False)