Spaces:
Runtime error
Runtime error
File size: 7,972 Bytes
751e7d4 085880a d2daf95 f7a9983 3b5590f fcd3706 b98f2e5 fcd3706 085880a d2daf95 f7a9983 d2daf95 d950565 d2daf95 fcd3706 d2daf95 71c83be 5c9a3e1 b98f2e5 0e2ac66 55dbaf1 0e2ac66 77de53d fcd3706 751e7d4 d2daf95 fcd3706 d2daf95 eacc8e2 b98f2e5 fcd3706 f7a9983 fcd3706 3b5590f 4c74a4e 3b5590f fcd3706 d2daf95 fcd3706 2275821 0f3cefd fcd3706 5d46926 fcd3706 b98f2e5 fcd3706 b98f2e5 6772cf6 5c9a3e1 f52ce74 5c9a3e1 e1952ef d2daf95 6772cf6 a29437c 6772cf6 a29437c 6772cf6 085880a a3b4442 f52ce74 d2daf95 b5a423e 0eab080 d2daf95 0eab080 d2daf95 e1952ef 0eab080 10c6d44 7729daa d2daf95 7729daa d2daf95 fcd3706 d2daf95 fcd3706 d2daf95 185eab3 908b38b d2daf95 085880a 6159031 556491b b98f2e5 e1952ef 5c9a3e1 085880a 4dd59d6 d2daf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import gradio as gr
from gradio.utils import get_space
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
import re
if not get_space():
try:
from dotenv import load_dotenv
load_dotenv()
except (ImportError, ModuleNotFoundError):
pass
from utils import (
run_interactive_notebook,
create_base_notebook,
update_notebook_display,
update_notebook_with_cell,
update_notebook_with_markdown,
)
E2B_API_KEY = os.environ["E2B_API_KEY"]
HF_TOKEN = os.environ["HF_TOKEN"]
DEFAULT_MAX_TOKENS = 512
SANDBOXES = {}
TMP_DIR = './tmp/'
if not os.path.exists(TMP_DIR):
os.makedirs(TMP_DIR)
notebook_data = create_base_notebook([])[0]
with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
with open("ds-system-prompt.txt", "r") as f:
DEFAULT_SYSTEM_PROMPT = f.read()
# Add this constant at the top with other constants
MAX_TURNS = 10
# Replace the client initialization with local model loading
def load_model_and_tokenizer(model_name="bigcomputer/jupycoder-7b-lora-350"):
if model_name == "bigcomputer/jupycoder-7b-lora-350":
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-7B-Instruct")
else:
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
# Function to extract code and text from model response
def parse_model_response(response_text):
cells = []
# Split by code blocks
parts = re.split(r'(```python[\s\S]*?```)', response_text)
for part in parts:
if part.strip():
if part.startswith('```python'):
# Extract code without the markers
code = re.sub(r'```python\n|```', '', part).strip()
cells.append({"type": "code", "content": code})
else:
# Regular text becomes markdown
cells.append({"type": "markdown", "content": part.strip()})
return cells
def execute_jupyter_agent(
system_prompt, user_input, max_new_tokens, model_name, files, message_history, request: gr.Request
):
if request.session_hash not in SANDBOXES:
SANDBOXES[request.session_hash] = Sandbox(api_key=E2B_API_KEY)
sbx = SANDBOXES[request.session_hash]
save_dir = os.path.join(TMP_DIR, request.session_hash)
os.makedirs(save_dir, exist_ok=True)
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
model, tokenizer = load_model_and_tokenizer(model_name)
# Handle file uploads
filenames = []
if files is not None:
for filepath in files:
filpath = Path(filepath)
with open(filepath, "rb") as file:
print(f"uploading {filepath}...")
sbx.files.write(filpath.name, file)
filenames.append(filpath.name)
# Initialize conversation
if len(message_history) == 0:
message_history.append({
"role": "system",
"content": system_prompt.format("- " + "\n- ".join(filenames))
})
message_history.append({"role": "user", "content": user_input})
# Create initial notebook
notebook_data = create_base_notebook([])
turn_count = 0
while turn_count < MAX_TURNS:
turn_count += 1
# Generate response
input_text = "\n".join([msg["content"] for msg in message_history])
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.7,
)
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Parse response into cells
cells = parse_model_response(response_text)
# Process each cell
has_code = False
for cell in cells:
if cell["type"] == "code":
has_code = True
# Execute code cell
result = sbx.python.run(cell["content"])
# Add code cell and output to notebook
notebook_data = update_notebook_with_cell(notebook_data, cell["content"], result)
# Add execution result to message history
message_history.append({
"role": "assistant",
"content": cell["content"]
})
message_history.append({
"role": "user",
"content": f"Execution result:\n{result}"
})
else:
# Add markdown cell to notebook
notebook_data = update_notebook_with_markdown(notebook_data, cell["content"])
message_history.append({
"role": "assistant",
"content": cell["content"]
})
# Update display after each cell
notebook_html = update_notebook_display(notebook_data)
yield notebook_html, message_history, save_dir
# If no code was generated or we've reached max turns, stop
if not has_code or turn_count >= MAX_TURNS:
break
# Save final notebook
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
def clear(msg_state):
msg_state = []
return update_notebook_display(create_base_notebook([])[0]), msg_state
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
"""
# Create the interface
with gr.Blocks() as demo:
msg_state = gr.State(value=[])
html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))
user_input = gr.Textbox(
value="Solve the Lotka-Volterra equation and plot the results.", lines=3, label="User input"
)
with gr.Row():
generate_btn = gr.Button("Let's go!")
clear_btn = gr.Button("Clear")
file = gr.File(TMP_DIR+"jupyter-agent.ipynb", label="Download Jupyter Notebook")
with gr.Accordion("Upload files", open=False):
files = gr.File(label="Upload files to use", file_count="multiple")
with gr.Accordion("Advanced Settings", open=False):
system_input = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
elem_classes="input-box",
lines=8,
)
with gr.Row():
max_tokens = gr.Number(
label="Max New Tokens",
value=DEFAULT_MAX_TOKENS,
minimum=128,
maximum=2048,
step=8,
interactive=True,
)
model = gr.Dropdown(
value="bigcomputer/jupycoder-7b-lora-350",
choices=[
"bigcomputer/jupycoder-7b-lora-350",
"Qwen/Qwen2.5-Coder-7B-Instruct"
],
label="Models"
)
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[system_input, user_input, max_tokens, model, files, msg_state],
outputs=[html_output, msg_state, file],
)
clear_btn.click(fn=clear, inputs=[msg_state], outputs=[html_output, msg_state])
demo.load(
fn=None,
inputs=None,
outputs=None,
js=""" () => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
}
"""
)
demo.launch(ssr_mode=False)
|