Updates with onnx model
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import time
|
|
| 3 |
import streamlit as st
|
| 4 |
from streamlit_chat import message
|
| 5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
|
|
| 6 |
import textwrap
|
| 7 |
|
| 8 |
from chat import generate_response, generate_tag
|
|
@@ -49,12 +50,15 @@ db = create_database()
|
|
| 49 |
@st.cache_resource()
|
| 50 |
def load_model():
|
| 51 |
print("test")
|
| 52 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 53 |
-
|
| 54 |
-
)
|
| 55 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
return tokenizer, model
|
| 59 |
|
| 60 |
st.title("BGPT : Bibek's Personal Chatbot")
|
|
|
|
| 3 |
import streamlit as st
|
| 4 |
from streamlit_chat import message
|
| 5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 6 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
| 7 |
import textwrap
|
| 8 |
|
| 9 |
from chat import generate_response, generate_tag
|
|
|
|
| 50 |
@st.cache_resource()
|
| 51 |
def load_model():
|
| 52 |
print("test")
|
| 53 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 54 |
+
# "MBZUAI/LaMini-Flan-T5-783M"
|
| 55 |
+
# )
|
| 56 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 57 |
+
# "MBZUAI/LaMini-Flan-T5-783M"
|
| 58 |
+
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained("Xenova/LaMini-Flan-T5-783M")
|
| 60 |
+
model = ORTModelForSeq2SeqLM.from_pretrained("Xenova/LaMini-Flan-T5-783M", subfolder = "onnx", decoder_file_name="decoder_with_past_model.onnx")
|
| 61 |
+
|
| 62 |
return tokenizer, model
|
| 63 |
|
| 64 |
st.title("BGPT : Bibek's Personal Chatbot")
|