|
import time |
|
|
|
import streamlit as st |
|
from streamlit_chat import message |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
from chat import generate_response |
|
|
|
if "tokenizer" not in st.session_state: |
|
st.session_state["tokenizer"] = AutoTokenizer.from_pretrained( |
|
"MBZUAI/LaMini-Flan-T5-248M" |
|
) |
|
st.session_state["model"] = AutoModelForSeq2SeqLM.from_pretrained( |
|
"MBZUAI/LaMini-Flan-T5-248M" |
|
) |
|
|
|
st.title("B-Bot : Bibek's Personal Chatbot") |
|
|
|
if "generated" not in st.session_state: |
|
st.session_state["generated"] = [] |
|
|
|
if "past" not in st.session_state: |
|
st.session_state["past"] = [] |
|
|
|
|
|
|
|
def get_text(): |
|
input_text = st.text_input("Enter your inquiries here: ", "Hi!!") |
|
return input_text |
|
|
|
|
|
user_input = get_text() |
|
|
|
if user_input: |
|
tokenizer = st.session_state["tokenizer"] |
|
model = st.session_state["model"] |
|
output = generate_response(user_input) |
|
prompt_template = "\nBased on the above content, try to answer the following question.\n\n" |
|
end_prompt = "Please make meaningful sentence and try to be descriptive as possible, ending with proper punctuations. If you think, there is good descriptive answers to the question from the above content, write sorry and advise them to contact Bibek directly.\n" |
|
short_response_template = "\nIf your response is very short like 1 or 2 sentence, add a followup sentence like 'Let me know if there's anything else I can help you with. or If there's anything else I can assist with, please don't hesitate to ask. I mean something similar in polite way." |
|
input = output + prompt_template + user_input + end_prompt |
|
start = time.time() |
|
input_ids = tokenizer( |
|
input, |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
outputs = model.generate(input_ids, max_length=512, do_sample=True) |
|
output = tokenizer.decode(outputs[0]).strip('<pad></s>').strip() |
|
end = time.time() |
|
|
|
print("Time for model inference: ", end - start) |
|
|
|
if len(st.session_state.past) == 15: |
|
st.session_state.past.pop(0) |
|
st.session_state.generated.pop(0) |
|
|
|
|
|
st.session_state.past.append(user_input) |
|
st.session_state.generated.append(output) |
|
|
|
if st.session_state["generated"]: |
|
|
|
for i in range(len(st.session_state["generated"]) - 1, -1, -1): |
|
message( |
|
st.session_state["generated"][i], |
|
avatar_style="bottts", |
|
seed=39, |
|
key=str(i), |
|
) |
|
message( |
|
st.session_state["past"][i], |
|
is_user=True, |
|
avatar_style="identicon", |
|
seed=4, |
|
key=str(i) + "_user", |
|
) |
|
|