from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" @tool def analyze_stock(ticker: str) -> dict: # type: ignore[type-arg] """ A tool that analyze stock data. Args: ticker: A string representing ticker """ import os from datetime import datetime, timedelta import matplotlib.pyplot as plt import numpy as np import pandas as pd import yfinance as yf from pytz import timezone # type: ignore stock = yf.Ticker(ticker) # Get historical data (1 year of data to ensure we have enough for 200-day MA) end_date = datetime.now(timezone("UTC")) start_date = end_date - timedelta(days=365) hist = stock.history(start=start_date, end=end_date) # Ensure we have data if hist.empty: return {"error": "No historical data available for the specified ticker."} # Compute basic statistics and additional metrics current_price = stock.info.get("currentPrice", hist["Close"].iloc[-1]) year_high = stock.info.get("fiftyTwoWeekHigh", hist["High"].max()) year_low = stock.info.get("fiftyTwoWeekLow", hist["Low"].min()) # Calculate 50-day and 200-day moving averages ma_50 = hist["Close"].rolling(window=50).mean().iloc[-1] ma_200 = hist["Close"].rolling(window=200).mean().iloc[-1] # Calculate YTD price change and percent change ytd_start = datetime(end_date.year, 1, 1, tzinfo=timezone("UTC")) ytd_data = hist.loc[ytd_start:] # type: ignore[misc] if not ytd_data.empty: price_change = ytd_data["Close"].iloc[-1] - ytd_data["Close"].iloc[0] percent_change = (price_change / ytd_data["Close"].iloc[0]) * 100 else: price_change = percent_change = np.nan # Determine trend if pd.notna(ma_50) and pd.notna(ma_200): if ma_50 > ma_200: trend = "Upward" elif ma_50 < ma_200: trend = "Downward" else: trend = "Neutral" else: trend = "Insufficient data for trend analysis" # Calculate volatility (standard deviation of daily returns) daily_returns = hist["Close"].pct_change().dropna() volatility = daily_returns.std() * np.sqrt(252) # Annualized volatility # Create result dictionary result = { "ticker": ticker, "current_price": current_price, "52_week_high": year_high, "52_week_low": year_low, "50_day_ma": ma_50, "200_day_ma": ma_200, "ytd_price_change": price_change, "ytd_percent_change": percent_change, "trend": trend, "volatility": volatility, } # Convert numpy types to Python native types for better JSON serialization for key, value in result.items(): if isinstance(value, np.generic): result[key] = value.item() return result final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()