Spaces:
Runtime error
Runtime error
Commit
·
72404d6
1
Parent(s):
dedf27f
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,41 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
from sklearn.linear_model import LinearRegression, Ridge
|
5 |
-
from sklearn.preprocessing import PolynomialFeatures
|
6 |
-
from sklearn.metrics import mean_squared_error
|
7 |
|
8 |
-
|
9 |
-
col1, col2 = st.columns(2)
|
10 |
|
11 |
-
|
12 |
-
alpha = st.slider('Lambda (Regularisation)', 0, 500, 1)
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
lr = LinearRegression()
|
29 |
-
lr.fit(x_new, y)
|
30 |
-
y_pred = lr.predict(x_new)
|
31 |
|
|
|
|
|
|
|
32 |
|
33 |
-
ri = Ridge(alpha = alpha)
|
34 |
-
ri.fit(x_new, y)
|
35 |
-
y_pred_ri = ri.predict(x_new)
|
36 |
|
|
|
37 |
|
38 |
-
fig1, ax1 = plt.subplots()
|
39 |
-
fig2, ax2 = plt.subplots()
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
# Only show ticks on the left and bottom spines
|
52 |
-
ax.yaxis.set_ticks_position('left')
|
53 |
-
ax.xaxis.set_ticks_position('bottom')
|
54 |
-
|
55 |
-
ax.set_xlabel("x")
|
56 |
-
ax.set_ylabel("y")
|
57 |
-
|
58 |
-
rmse = np.round(np.sqrt(mean_squared_error(y_pred, y)), 2)
|
59 |
-
ax1.set_title(f"Train RMSE: {rmse}")
|
60 |
-
|
61 |
-
rmse_ri = np.round(np.sqrt(mean_squared_error(y_pred_ri, y)), 2)
|
62 |
-
ax2.set_title(f"Train RMSE: {rmse_ri}")
|
63 |
-
|
64 |
-
with col1:
|
65 |
-
st.pyplot(fig1)
|
66 |
-
|
67 |
-
with col2:
|
68 |
-
st.pyplot(fig2)
|
69 |
-
hide_streamlit_style = """
|
70 |
-
<style>
|
71 |
-
#MainMenu {visibility: hidden;}
|
72 |
-
footer {visibility: hidden;}
|
73 |
-
</style>
|
74 |
-
"""
|
75 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from huggingface_hub import from_pretrained_keras
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
model = from_pretrained_keras("keras-io/semi-supervised-classification-simclr")
|
|
|
7 |
|
8 |
+
labels = ["airplane", "bird", "car", "cat", "deer", "dog", "horse", "monkey", "ship", "truck"]
|
|
|
9 |
|
10 |
|
11 |
+
def infer(test_image):
|
12 |
+
image = tf.constant(test_image)
|
13 |
+
image = tf.reshape(image, [-1, 96, 96, 3])
|
14 |
+
pred = model.predict(image)
|
15 |
+
pred_list = pred[0, :]
|
16 |
+
pred_softmax = np.exp(pred_list)/np.sum(np.exp(pred_list))
|
17 |
+
softmax_list = pred_softmax.tolist()
|
18 |
+
return {labels[i]: softmax_list[i] for i in range(10)}
|
19 |
|
20 |
|
21 |
+
image = gr.inputs.Image(shape=(96, 96))
|
22 |
+
label = gr.outputs.Label(num_top_classes=3)
|
23 |
|
|
|
|
|
|
|
24 |
|
25 |
+
article = """<center>
|
26 |
+
Authors: <a href='https://twitter.com/johko990' target='_blank'>Johannes Kolbe</a> after an example by András Béres at
|
27 |
+
<a href='https://keras.io/examples/vision/semisupervised_simclr/' target='_blank'>keras.io</a>"""
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
+
description = """Image classification with a model trained via Semi-supervised Contrastive Learning """
|
31 |
|
|
|
|
|
32 |
|
33 |
+
Iface = gr.Interface(
|
34 |
+
fn=infer,
|
35 |
+
inputs=image,
|
36 |
+
outputs=label,
|
37 |
+
examples=[["examples/monkey.jpeg"], ["examples/titanic.jpg"], ["examples/truck.jpg"]],
|
38 |
+
title="Semi-Supervised Contrastive Learning Classification",
|
39 |
+
article=article,
|
40 |
+
description=description,
|
41 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|