Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer
|
4 |
+
from datasets import Dataset
|
5 |
+
|
6 |
+
# Load preprocessed and tokenized data
|
7 |
+
def load_data(preprocessed_file, tokenized_file):
|
8 |
+
with open(preprocessed_file.name, 'r') as f:
|
9 |
+
preprocessed_data = json.load(f)
|
10 |
+
|
11 |
+
with open(tokenized_file.name, 'r') as f:
|
12 |
+
tokenized_data = json.load(f)
|
13 |
+
|
14 |
+
return preprocessed_data, tokenized_data
|
15 |
+
|
16 |
+
# Fine-tune the model
|
17 |
+
def fine_tune_model(preprocessed_file, tokenized_file, progress=gr.Progress()):
|
18 |
+
preprocessed_data, tokenized_data = load_data(preprocessed_file, tokenized_file)
|
19 |
+
|
20 |
+
# Convert tokenized data to Dataset
|
21 |
+
dataset = Dataset.from_dict(tokenized_data)
|
22 |
+
|
23 |
+
# Split the dataset into train and validation sets
|
24 |
+
tokenized_datasets = dataset.train_test_split(test_size=0.2)
|
25 |
+
|
26 |
+
model = AutoModelForSequenceClassification.from_pretrained('anferico/bert-for-patents', num_labels=2)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents')
|
28 |
+
|
29 |
+
training_args = TrainingArguments(
|
30 |
+
output_dir='./results',
|
31 |
+
num_train_epochs=3,
|
32 |
+
per_device_train_batch_size=16,
|
33 |
+
per_device_eval_batch_size=64,
|
34 |
+
warmup_steps=500,
|
35 |
+
weight_decay=0.01,
|
36 |
+
logging_dir='./logs',
|
37 |
+
logging_steps=10,
|
38 |
+
evaluation_strategy="epoch",
|
39 |
+
save_strategy="epoch",
|
40 |
+
load_best_model_at_end=True,
|
41 |
+
)
|
42 |
+
|
43 |
+
trainer = Trainer(
|
44 |
+
model=model,
|
45 |
+
args=training_args,
|
46 |
+
train_dataset=tokenized_datasets['train'],
|
47 |
+
eval_dataset=tokenized_datasets['test'],
|
48 |
+
)
|
49 |
+
|
50 |
+
progress(0.5, "Fine-tuning the model...")
|
51 |
+
trainer.train()
|
52 |
+
progress(1.0, "Fine-tuning complete.")
|
53 |
+
|
54 |
+
model.save_pretrained('./fine_tuned_patentbert')
|
55 |
+
tokenizer.save_pretrained('./fine_tuned_patentbert')
|
56 |
+
|
57 |
+
return "Model fine-tuned and saved successfully."
|
58 |
+
|
59 |
+
# Create Gradio interface
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=fine_tune_model,
|
62 |
+
inputs=[
|
63 |
+
gr.File(label="Upload Preprocessed Data JSON"),
|
64 |
+
gr.File(label="Upload Tokenized Data JSON")
|
65 |
+
],
|
66 |
+
outputs=gr.Textbox(label="Processing Information"),
|
67 |
+
title="Fine-Tune Patent BERT Model",
|
68 |
+
description="Upload preprocessed and tokenized JSON files to fine-tune the BERT model.",
|
69 |
+
live=True # Enable live updates for progress
|
70 |
+
)
|
71 |
+
|
72 |
+
# Launch the interface
|
73 |
+
iface.launch()
|