bhlewis commited on
Commit
39a8b03
·
verified ·
1 Parent(s): 1d17562

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import json
3
+ from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments, AutoTokenizer
4
+ from datasets import Dataset
5
+
6
+ # Load preprocessed and tokenized data
7
+ def load_data(preprocessed_file, tokenized_file):
8
+ with open(preprocessed_file.name, 'r') as f:
9
+ preprocessed_data = json.load(f)
10
+
11
+ with open(tokenized_file.name, 'r') as f:
12
+ tokenized_data = json.load(f)
13
+
14
+ return preprocessed_data, tokenized_data
15
+
16
+ # Fine-tune the model
17
+ def fine_tune_model(preprocessed_file, tokenized_file, progress=gr.Progress()):
18
+ preprocessed_data, tokenized_data = load_data(preprocessed_file, tokenized_file)
19
+
20
+ # Convert tokenized data to Dataset
21
+ dataset = Dataset.from_dict(tokenized_data)
22
+
23
+ # Split the dataset into train and validation sets
24
+ tokenized_datasets = dataset.train_test_split(test_size=0.2)
25
+
26
+ model = AutoModelForSequenceClassification.from_pretrained('anferico/bert-for-patents', num_labels=2)
27
+ tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents')
28
+
29
+ training_args = TrainingArguments(
30
+ output_dir='./results',
31
+ num_train_epochs=3,
32
+ per_device_train_batch_size=16,
33
+ per_device_eval_batch_size=64,
34
+ warmup_steps=500,
35
+ weight_decay=0.01,
36
+ logging_dir='./logs',
37
+ logging_steps=10,
38
+ evaluation_strategy="epoch",
39
+ save_strategy="epoch",
40
+ load_best_model_at_end=True,
41
+ )
42
+
43
+ trainer = Trainer(
44
+ model=model,
45
+ args=training_args,
46
+ train_dataset=tokenized_datasets['train'],
47
+ eval_dataset=tokenized_datasets['test'],
48
+ )
49
+
50
+ progress(0.5, "Fine-tuning the model...")
51
+ trainer.train()
52
+ progress(1.0, "Fine-tuning complete.")
53
+
54
+ model.save_pretrained('./fine_tuned_patentbert')
55
+ tokenizer.save_pretrained('./fine_tuned_patentbert')
56
+
57
+ return "Model fine-tuned and saved successfully."
58
+
59
+ # Create Gradio interface
60
+ iface = gr.Interface(
61
+ fn=fine_tune_model,
62
+ inputs=[
63
+ gr.File(label="Upload Preprocessed Data JSON"),
64
+ gr.File(label="Upload Tokenized Data JSON")
65
+ ],
66
+ outputs=gr.Textbox(label="Processing Information"),
67
+ title="Fine-Tune Patent BERT Model",
68
+ description="Upload preprocessed and tokenized JSON files to fine-tune the BERT model.",
69
+ live=True # Enable live updates for progress
70
+ )
71
+
72
+ # Launch the interface
73
+ iface.launch()