Add DRDataset and DRDataModule classes
Browse files- src/dataset.py +123 -0
- src/model.py +69 -0
src/dataset.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import lightning as L
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import torch
|
| 7 |
+
from sklearn.utils.class_weight import compute_class_weight
|
| 8 |
+
from torch.utils.data import DataLoader, Dataset
|
| 9 |
+
from torchvision.io import read_image
|
| 10 |
+
from torchvision.transforms import v2 as T
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DRDataset(Dataset):
|
| 14 |
+
def __init__(self, csv_path: str, transform=None):
|
| 15 |
+
self.csv_path = csv_path
|
| 16 |
+
self.transform = transform
|
| 17 |
+
self.image_paths, self.labels = self.load_csv_data()
|
| 18 |
+
|
| 19 |
+
def load_csv_data(self):
|
| 20 |
+
# Check if CSV file exists
|
| 21 |
+
if not os.path.isfile(self.csv_path):
|
| 22 |
+
raise FileNotFoundError(f"CSV file '{self.csv_path}' not found.")
|
| 23 |
+
|
| 24 |
+
# Load data from CSV file
|
| 25 |
+
data = pd.read_csv(self.csv_path)
|
| 26 |
+
|
| 27 |
+
# Check if 'image_path' and 'label' columns exist
|
| 28 |
+
if "image_path" not in data.columns or "label" not in data.columns:
|
| 29 |
+
raise ValueError("CSV file must contain 'image_path' and 'label' columns.")
|
| 30 |
+
|
| 31 |
+
# Extract image paths and labels
|
| 32 |
+
image_paths = data["image_path"].tolist()
|
| 33 |
+
labels = data["label"].tolist()
|
| 34 |
+
|
| 35 |
+
# Check if any image paths are invalid
|
| 36 |
+
invalid_image_paths = [
|
| 37 |
+
img_path for img_path in image_paths if not os.path.isfile(img_path)
|
| 38 |
+
]
|
| 39 |
+
if invalid_image_paths:
|
| 40 |
+
raise FileNotFoundError(f"Invalid image paths found: {invalid_image_paths}")
|
| 41 |
+
|
| 42 |
+
# Convert labels to LongTensor
|
| 43 |
+
labels = torch.LongTensor(labels)
|
| 44 |
+
|
| 45 |
+
return image_paths, labels
|
| 46 |
+
|
| 47 |
+
def __len__(self):
|
| 48 |
+
return len(self.image_paths)
|
| 49 |
+
|
| 50 |
+
def __getitem__(self, idx):
|
| 51 |
+
image_path = self.image_paths[idx]
|
| 52 |
+
label = self.labels[idx]
|
| 53 |
+
|
| 54 |
+
# Load image
|
| 55 |
+
try:
|
| 56 |
+
image = read_image(image_path)
|
| 57 |
+
except Exception as e:
|
| 58 |
+
raise IOError(f"Error loading image at path '{image_path}': {e}")
|
| 59 |
+
|
| 60 |
+
# Apply transformations if provided
|
| 61 |
+
if self.transform:
|
| 62 |
+
try:
|
| 63 |
+
image = self.transform(image)
|
| 64 |
+
except Exception as e:
|
| 65 |
+
raise RuntimeError(
|
| 66 |
+
f"Error applying transformations to image at path '{image_path}': {e}"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
return image, label
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class DRDataModule(L.LightningDataModule):
|
| 73 |
+
def __init__(self, batch_size: int = 8, num_workers: int = 4):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.batch_size = batch_size
|
| 76 |
+
self.num_workers = num_workers
|
| 77 |
+
|
| 78 |
+
# Define the transformations
|
| 79 |
+
self.train_transform = T.Compose(
|
| 80 |
+
[
|
| 81 |
+
T.Resize((224, 224), antialias=True),
|
| 82 |
+
T.RandomHorizontalFlip(p=0.5),
|
| 83 |
+
T.ToDtype(torch.float32, scale=True),
|
| 84 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 85 |
+
]
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
self.val_transform = T.Compose(
|
| 89 |
+
[
|
| 90 |
+
T.Resize((224, 224), antialias=True),
|
| 91 |
+
T.ToDtype(torch.float32, scale=True),
|
| 92 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 93 |
+
]
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
self.num_classes = 5
|
| 97 |
+
|
| 98 |
+
def setup(self, stage=None):
|
| 99 |
+
self.train_dataset = DRDataset("data/train.csv", transform=self.train_transform)
|
| 100 |
+
self.val_dataset = DRDataset("data/val.csv", transform=self.val_transform)
|
| 101 |
+
|
| 102 |
+
# compute class weights
|
| 103 |
+
labels = self.train_dataset.labels.numpy()
|
| 104 |
+
self.class_weights = self.compute_class_weights(labels)
|
| 105 |
+
|
| 106 |
+
def train_dataloader(self):
|
| 107 |
+
return DataLoader(
|
| 108 |
+
self.train_dataset,
|
| 109 |
+
batch_size=self.batch_size,
|
| 110 |
+
shuffle=True,
|
| 111 |
+
num_workers=self.num_workers,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def val_dataloader(self):
|
| 115 |
+
return DataLoader(
|
| 116 |
+
self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def compute_class_weights(self, labels):
|
| 120 |
+
class_weights = compute_class_weight(
|
| 121 |
+
class_weight="balanced", classes=np.unique(labels), y=labels
|
| 122 |
+
)
|
| 123 |
+
return torch.tensor(class_weights, dtype=torch.float32)
|
src/model.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lightning as L
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torchmetrics.functional import accuracy
|
| 5 |
+
from torchvision import models
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DRModel(L.LightningModule):
|
| 9 |
+
def __init__(
|
| 10 |
+
self, num_classes: int, learning_rate: float = 2e-4, class_weights=None
|
| 11 |
+
):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.save_hyperparameters()
|
| 14 |
+
self.num_classes = num_classes
|
| 15 |
+
self.learning_rate = learning_rate
|
| 16 |
+
|
| 17 |
+
# Define the model
|
| 18 |
+
# self.model = models.densenet121(weights=models.DenseNet121_Weights.DEFAULT)
|
| 19 |
+
self.model = models.densenet169(weights=models.DenseNet169_Weights.DEFAULT)
|
| 20 |
+
# self.model = models.vit_b_16(weights=models.ViT_B_16_Weights.DEFAULT)
|
| 21 |
+
# freeze the feature extractor
|
| 22 |
+
for param in self.model.parameters():
|
| 23 |
+
param.requires_grad = False
|
| 24 |
+
# Change the output layer to have the number of classes
|
| 25 |
+
in_features = self.model.classifier.in_features
|
| 26 |
+
# in_features = 768
|
| 27 |
+
self.model.classifier = nn.Sequential(
|
| 28 |
+
nn.Linear(in_features, in_features // 2),
|
| 29 |
+
nn.ReLU(),
|
| 30 |
+
nn.Dropout(0.1),
|
| 31 |
+
nn.Linear(in_features // 2, num_classes),
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Define the loss function
|
| 35 |
+
self.criterion = nn.CrossEntropyLoss(weight=class_weights)
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
return self.model(x)
|
| 39 |
+
|
| 40 |
+
def training_step(self, batch):
|
| 41 |
+
x, y = batch
|
| 42 |
+
logits = self.model(x)
|
| 43 |
+
loss = self.criterion(logits, y)
|
| 44 |
+
self.log("train_loss", loss, prog_bar=True)
|
| 45 |
+
return loss
|
| 46 |
+
|
| 47 |
+
def validation_step(self, batch, batch_idx):
|
| 48 |
+
x, y = batch
|
| 49 |
+
logits = self.model(x)
|
| 50 |
+
loss = self.criterion(logits, y)
|
| 51 |
+
preds = torch.argmax(logits, dim=1)
|
| 52 |
+
acc = accuracy(preds, y, task="multiclass", num_classes=self.num_classes)
|
| 53 |
+
self.log("val_loss", loss, prog_bar=True)
|
| 54 |
+
self.log("val_acc", acc, prog_bar=True)
|
| 55 |
+
|
| 56 |
+
def configure_optimizers(self):
|
| 57 |
+
optimizer = torch.optim.Adam(
|
| 58 |
+
self.parameters(), lr=self.learning_rate, weight_decay=1e-4
|
| 59 |
+
)
|
| 60 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
|
| 61 |
+
return {
|
| 62 |
+
"optimizer": optimizer,
|
| 63 |
+
"lr_scheduler": {
|
| 64 |
+
"scheduler": scheduler,
|
| 65 |
+
"interval": "epoch",
|
| 66 |
+
"monitor": "val_loss",
|
| 67 |
+
},
|
| 68 |
+
}
|
| 69 |
+
# return optimizer
|