Spaces:
Running
Running
File size: 6,534 Bytes
b817ab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import requests
import soundfile as sf
import time
import streamlit as st
def speech_translation(audio_file_path, language):
if audio_file_path is None:
return "No audio input provided!"
# Convert audio to .wav format if not already
if not audio_file_path.endswith(".wav"):
wav_data, samplerate = sf.read(audio_file_path)
sf.write("temp_audio.wav", wav_data, samplerate)
audio_file_path = "temp_audio.wav"
else:
audio_file_path = audio_file_path
# ASR processing
files = {
'file': open(audio_file_path, "rb"),
'language': (None, language),
'vtt': (None, 'true'),
}
response = requests.post('https://asr.iitm.ac.in/ssl_asr/decode', files=files)
print(response.json())
try:
asr_output = response.json()['transcript']
except:
return "Error in ASR processing"
asr_output = asr_output.replace("।", "")
asr_output = asr_output.replace(".", "")
time.sleep(1)
lang = ""
if language == "telugu":
lang = "te"
elif language == "hindi":
lang = "hi"
elif language == "marathi":
lang = "mr"
elif language == "bengali":
lang = "bn"
payload = {
"pipelineTasks": [
{
"taskType": "translation",
"config": {
"language": {
"sourceLanguage": lang,
"targetLanguage": "en",
},
},
}
],
"pipelineRequestConfig": {
"pipelineId": "64392f96daac500b55c543cd"
}
}
headers = {
"Content-Type": "application/json",
"userID": "2aeef589f4584eb08aa0b9c49761aeb8",
"ulcaApiKey": "02ed10445a-66b0-4061-9030-9b0b8b37a4f1"
}
response = requests.post('https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline', json=payload, headers=headers)
if response.status_code == 200:
response_data = response.json()
print(response_data)
compute_payload = {
"pipelineTasks": [
{
"taskType": "translation",
"config": {
"language": {
"sourceLanguage": lang,
"targetLanguage": "en",
},
},
}
],
"inputData": {"input": [{"source": asr_output}]},
}
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]:
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
if compute_response.status_code == 200:
compute_response_data = compute_response.json()
print(compute_response_data)
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
return translated_content
else:
return f"Error in translation: status code {compute_response.status_code}"
else:
return f"Error in fetching model pipeline: status code {response.status_code}"
return "Translation failed"
# Streamlit UI
st.title("Speech Translation")
st.write("Record your speech and get the English translation.")
# Audio Recorder HTML
st.markdown("""
<h3>Record Audio</h3>
<button id="startButton">Start Recording</button>
<button id="stopButton" disabled>Stop Recording</button>
<audio id="recordedAudio" controls></audio>
<script>
let chunks = [];
let recorder;
let audioURL;
let recordedAudio = document.getElementById('recordedAudio');
document.getElementById('startButton').onclick = function() {
navigator.mediaDevices.getUserMedia({ audio: true })
.then(stream => {
recorder = new MediaRecorder(stream);
recorder.ondataavailable = e => chunks.push(e.data);
recorder.onstop = e => {
let blob = new Blob(chunks, { type: 'audio/wav' });
chunks = [];
audioURL = URL.createObjectURL(blob);
recordedAudio.src = audioURL;
// Send the recorded audio blob to Streamlit
var reader = new FileReader();
reader.readAsDataURL(blob);
reader.onloadend = function() {
var base64data = reader.result;
fetch('/upload-audio', {
method: 'POST',
body: JSON.stringify({ audio: base64data }),
headers: { 'Content-Type': 'application/json' }
}).then(response => response.json())
.then(data => console.log(data));
}
};
recorder.start();
document.getElementById('startButton').disabled = true;
document.getElementById('stopButton').disabled = false;
});
};
document.getElementById('stopButton').onclick = function() {
recorder.stop();
document.getElementById('startButton').disabled = false;
document.getElementById('stopButton').disabled = true;
};
</script>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
language = st.selectbox("Select Language", ["telugu", "hindi", "marathi", "bengali"])
if st.button("Translate"):
if uploaded_file is not None:
with open("uploaded_audio.wav", "wb") as f:
f.write(uploaded_file.getbuffer())
result = speech_translation("uploaded_audio.wav", language)
st.text_area("Translation", result)
elif st.session_state.get('recorded_audio'):
result = speech_translation(st.session_state['recorded_audio'], language)
st.text_area("Translation", result)
else:
st.write("Please upload an audio file or record your speech and select a language.") |