Spaces:
Running
Running
File size: 4,202 Bytes
b817ab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import requests
import gradio as gr
import soundfile as sf
import time
def speech_translation(audio, language):
if audio is None:
return "No audio input provided!", "No audio input provided!"
# Convert audio to .wav format if not already
if not audio.endswith(".wav"):
wav_data, samplerate = sf.read(audio)
sf.write("temp_audio.wav", wav_data, samplerate)
audio_file = "temp_audio.wav"
else:
audio_file = audio
# ASR processing
files = {
'file': open(audio_file, "rb"),
'language': (None, language),
'vtt': (None, 'true'),
}
response = requests.post('https://asr.iitm.ac.in/ssl_asr/decode', files=files)
print(response.json())
try:
asr_output = response.json()['transcript']
except:
asr_output = "Error in ASR processing"
asr_output = asr_output.replace("।", "")
asr_output = asr_output.replace(".", "")
time.sleep(1)
if language == "telugu":
lang = "te"
elif language == "hindi":
lang = "hi"
elif language == "marathi":
lang = "mr"
elif language == "bengali":
lang = "bn"
payload = {
"pipelineTasks": [
{
"taskType": "translation",
"config": {
"language": {
"sourceLanguage": lang,
"targetLanguage": "en",
},
},
}
],
"pipelineRequestConfig": {
"pipelineId" : "64392f96daac500b55c543cd"
}
}
headers = {
"Content-Type": "application/json",
"userID": "2aeef589f4584eb08aa0b9c49761aeb8",
"ulcaApiKey": "02ed10445a-66b0-4061-9030-9b0b8b37a4f1"
}
response = requests.post('https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline', json=payload, headers=headers)
if response.status_code == 200:
response_data = response.json()
print(response_data)
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
# if lang=="te":
# service_id = "bhashini/iitm/asr-dravidian--gpu--t4"
# else:
# service_id = "bhashini/iitm/asr-indoaryan--gpu--t4"
# print("halfway")
compute_payload = {
"pipelineTasks": [
{
"taskType": "translation",
"config": {
"language": {
"sourceLanguage": lang,
"targetLanguage": "en",
},
},
}
],
"inputData": {"input": [{"source": asr_output}]},
}
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]:
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
# print(compute_response.json())
if compute_response.status_code == 200:
compute_response_data = compute_response.json()
print(compute_response_data)
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
print(
"Translation successful",
translated_content
)
else:
print (
"status_code", compute_response.status_code)
return translated_content
iface = gr.Interface(
fn=speech_translation,
inputs=[
gr.Audio(type="filepath", label="Record your speech"),
gr.Dropdown(["telugu", "hindi", "marathi", "bengali"], label="Select Language")
],
outputs=["text"],
title="Speech Translation",
description="Record your speech and get the English translation.",
)
iface.launch() |