from peft import PeftModel from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig import torch n_gpus = torch.cuda.device_count() max_memory = {i: max_memory for i in range(n_gpus)} print(f'Max memory : {max_memory}') tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf") max_memory = '40GB' model = LLaMAForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, device_map="auto",max_memory=max_memory ) model = PeftModel.from_pretrained(model, "tloen/alpaca-lora-7b") def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. Answer step by step. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. Answer step by step. ### Instruction: {instruction} ### Response:""" generation_config = GenerationConfig( temperature=0.1, top_p=0.75, num_beams=4, ) def evaluate(instruction, input=None): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) for s in generation_output.sequences: output = tokenizer.decode(s) print("Response:", output.split("### Response:")[1].strip()) import gradio as gr from peft import PeftModel from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig import gradio as gr def evaluate1(instruction): prompt = generate_prompt(instruction) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) for s in generation_output.sequences: output = tokenizer.decode(s) return output.split("### Response:")[1].strip() inputs = gr.inputs.Textbox(lines=5, label="Instruction") outputs = gr.outputs.Textbox(label="Response") title = "LLaMA-7B Language Model" description = "This is a LLaMA-7B language model fine-tuned on various text datasets to generate text for a given task. It was trained on PyTorch by and is capable of generating high-quality, coherent text that is similar to human writing. The model is highly versatile and can be used for a variety of tasks, including text completion, summarization, and translation." copyright = "Copyright Bhaskar Tripathi (2023)" gr.Interface(evaluate1, inputs, outputs, title=title, description=description, footer=copyright, flag=False).launch()