Spaces:
Sleeping
Sleeping
File size: 9,414 Bytes
ff977f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import numpy as np
import numpyro
from numpyro.distributions import Normal, StudentT, Laplace, Uniform
from numpyro.infer import MCMC, NUTS, Predictive
from jax import random
import arviz as az
import streamlit as st
import matplotlib.pyplot as plt
import pickle
plt.style.use("seaborn-v0_8")
def phi(X, degree=2):
return np.concatenate([X**i for i in range(1, degree + 1)], axis=1)
st.set_page_config(layout="wide")
st.title("Bayesian Linear Regression")
st.markdown(
"This app shows the effect of changing the prior and the likelihood distributions used in Bayesian Linear Regression. Since they do not always form a conjugate pair, we use ``` numpyro ``` to numerically sample from the posterior distribution using MCMC with the No-U-Turn Sampler (NUTS) algorithm."
)
left, right = st.columns([0.3, 0.7])
with left:
st.write("---")
d = st.select_slider(
label="Degree of polynomial features", options=np.arange(1, 11), value=1
)
weight_prior_type = st.selectbox(
r"##### Weight prior $p(\theta)$",
["Normal", "Laplace", "Uniform"],
)
if weight_prior_type == "Normal":
ll, rr = st.columns(2)
with ll:
mu = st.select_slider(
label=r"$\mu$", options=np.arange(-5.0, 6.0), value=0.0
)
with rr:
sigma = st.slider(
label=r"$\sigma$",
min_value=0.1,
max_value=10.0,
value=1.0,
step=0.1,
)
weight_prior = Normal(mu, sigma)
elif weight_prior_type == "Laplace":
ll, rr = st.columns(2)
with ll:
mu = st.slider(
label=r"$\mu$", min_value=-5.0, max_value=5.0, value=0.0, step=0.1
)
with rr:
bw = st.slider(
label=r"$b$", min_value=0.1, max_value=10.0, value=1.0, step=0.1
)
weight_prior = Laplace(mu, bw)
elif weight_prior_type == "Uniform":
ll, rr = st.columns(2)
with ll:
a = st.slider(
label=r"$a$", min_value=-6.0, max_value=5.0, value=-6.0, step=0.1
)
with rr:
b = st.slider(
label=r"$b$",
min_value=a + 1e-3,
max_value=6.0 + 1e-3,
value=6.0,
step=0.1,
)
if a >= b:
st.error("Lower bound must be less than upper bound")
weight_prior = Uniform(a, b)
same_bias_prior = st.checkbox(r"Same prior on bias $\theta_0$", value=True)
if not same_bias_prior:
bias_prior_type = st.selectbox(
r"##### Bias prior $p(\mathcal{b})$",
["Normal", "Laplace", "Uniform"],
)
if bias_prior_type == "Normal":
ll, rr = st.columns(2)
with ll:
mu = st.slider(
label=r"$\mu$",
min_value=-5.0,
max_value=5.0,
value=0.0,
step=0.1,
key="bias_mu",
)
with rr:
sigma = st.slider(
label=r"$\sigma$",
min_value=0.1,
max_value=10.0,
value=1.0,
step=0.1,
key="bias_sigma",
)
bias_prior = Normal(mu, sigma)
elif bias_prior_type == "Laplace":
ll, rr = st.columns(2)
with ll:
mu = st.slider(
label=r"$\mu$",
min_value=-5.0,
max_value=5.0,
value=0.0,
step=0.1,
key="bias_mu",
)
with rr:
bw = st.slider(
label=r"$b$",
min_value=0.1,
max_value=10.0,
value=1.0,
step=0.1,
key="bias_bw",
)
bias_prior = Laplace(mu, bw)
elif bias_prior_type == "Uniform":
ll, rr = st.columns(2)
with ll:
a = st.slider(
label="Lower bound",
min_value=-6.0,
max_value=5.0,
value=-6.0,
step=0.1,
key="bias_a",
)
with rr:
b = st.slider(
label="Upper bound",
min_value=a + 1e-3,
max_value=6.0 + 1e-3,
value=6.0,
step=0.1,
key="bias_b",
)
if a >= b:
st.error("Lower bound must be less than upper bound")
bias_prior = Uniform(a, b)
else:
bias_prior = weight_prior
st.write("---")
ll, rr = st.columns(2)
with ll:
likelihood_type = st.selectbox(
r"##### Likelihood $p(\mathcal{D} | \theta)$",
["Normal", "StudentT", "Laplace"],
)
with rr:
noise_sigma = st.slider(
label="Aleatoric noise $\sigma$",
min_value=0.1,
max_value=2.0,
value=0.5,
step=0.1,
)
if likelihood_type == "StudentT":
likelihood_df = st.select_slider(
label=r"Degrees of freedom $\nu$",
options=list(range(1, 21)),
value=3,
key="likelihood_df",
)
st.write("---")
st.write("##### Sampling parameters")
ll, rr = st.columns(2)
with ll:
num_samples = st.slider(
label="Number of samples",
min_value=500,
max_value=10000,
value=2000,
step=500,
)
with rr:
num_warmup = st.slider(
label="Number of warmup steps",
min_value=100,
max_value=1000,
value=500,
step=100,
)
st.write("---")
st.write("##### Dataset parameters")
ll, rr = st.columns(2)
with ll:
dataset_type = st.selectbox("Select Dataset", ["Sin", "Log", "Exp"])
with rr:
dataset_noise_sigma = st.slider(
label="Dataset noise $\sigma$",
min_value=0.1,
max_value=2.0,
value=1.0,
step=0.1,
)
with right:
np.random.seed(42)
if dataset_type == "Sin":
X = np.sort(2 * np.random.rand(100)).reshape(-1, 1)
X_lin = np.linspace(0, 2, 100).reshape(-1, 1)
y = X * np.sin(2 * np.pi * X) + dataset_noise_sigma * np.random.randn(
100
).reshape(-1, 1)
elif dataset_type == "Log":
X = np.sort(2 * np.random.rand(100)).reshape(-1, 1)
X_lin = np.linspace(0, 2, 100).reshape(-1, 1)
y = np.log(X) + dataset_noise_sigma * np.random.randn(100).reshape(-1, 1)
elif dataset_type == "Exp":
X = np.sort(2 * np.random.rand(100)).reshape(-1, 1)
X_lin = np.linspace(0, 2, 100).reshape(-1, 1)
y = np.exp(X) + dataset_noise_sigma * np.random.randn(100).reshape(-1, 1)
X = phi(X, d)
X_lin = phi(X_lin, d)
def model(X=None, y=None):
w = numpyro.sample("w", weight_prior.expand([X.shape[1], 1]))
b = numpyro.sample("b", bias_prior.expand([1, 1]))
y_hat = X @ w + b
if likelihood_type == "Normal":
return numpyro.sample(
"y_pred",
Normal(y_hat, noise_sigma),
obs=y,
)
elif likelihood_type == "StudentT":
return numpyro.sample(
"y_pred",
StudentT(likelihood_df, y_hat, noise_sigma),
obs=y,
)
elif likelihood_type == "Laplace":
return numpyro.sample(
"y_pred",
Laplace(y_hat, noise_sigma),
obs=y,
)
kernel = NUTS(model)
mcmc = MCMC(
kernel,
num_samples=num_samples,
num_warmup=num_warmup,
)
rng_key = random.PRNGKey(0)
mcmc.run(rng_key, X=X, y=y)
posterior_samples = mcmc.get_samples()
rng_key = random.PRNGKey(1)
posterior_predictive = Predictive(model, posterior_samples)
y_pred = posterior_predictive(rng_key, X=X_lin, y=None)["y_pred"]
mean = y_pred.mean(0)
std = y_pred.std(0)
fig, ax = plt.subplots(figsize=(6, 4), dpi=300)
for i in range(1, 21):
ax.fill_between(
X_lin[:, 0],
(mean - (3 * i / 20) * std).reshape(-1),
(mean + (3 * i / 20) * std).reshape(-1),
color="C0",
alpha=0.05,
edgecolor=None,
)
ax.plot(X_lin[:, 0], mean, "r", label="Mean", linewidth=1)
ax.scatter(
X[:, 0],
y.ravel(),
c="k",
label="Datapoints",
marker="x",
s=8,
linewidth=0.5,
)
ax.set_xlabel("x", fontsize=7)
ax.set_ylabel("y", fontsize=7)
ax.set_title("Posterior Predictive", fontsize=8)
ax.tick_params(labelsize=6)
ax.legend(fontsize=7)
plt.tight_layout()
st.pyplot(fig)
axes = az.plot_trace(mcmc, compact=True)
fig = axes.ravel()[0].figure
plt.tight_layout()
st.pyplot(fig)
file = open("description.md", "r")
st.markdown(file.read())
|