import numpy as np import gradio as gr import tensorflow as tf # version 2.13.0 from keras.models import load_model # version matching your TensorFlow import cv2 import json def analyse(img, plant_type): # Load label_disease.json with open('data/label_disease.json', 'r') as f: label_disease = json.load(f) # Load plant_label_disease.json with open('data/plant_label_disease.json', 'r') as f: plant_label_disease = json.load(f) HEIGHT = 256 WIDTH = 256 modelArchitecturePath = 'model/model_architecture.h5' modelWeightsPath = 'model/model_weights.h5' # Load the model dnn_model = load_model(modelArchitecturePath, compile=False) dnn_model.load_weights(modelWeightsPath) # Preprocess the image process_img = cv2.resize(img, (HEIGHT, WIDTH), interpolation=cv2.INTER_LINEAR) process_img = process_img / 255.0 process_img = np.expand_dims(process_img, axis=0) # Predict using the model y_pred = dnn_model.predict(process_img) y_pred = y_pred[0] # Identify predictions p_id = plant_label_disease[plant_type.lower()][0] for disease in plant_label_disease[plant_type.lower()]: if y_pred[disease] > y_pred[p_id]: p_id = disease overall_predicted_id = np.argmax(y_pred) overall_predicted_name = label_disease[str(overall_predicted_id)] overall_predicted_acc = y_pred[overall_predicted_id] plant_predicted_id = p_id plant_predicted_name = label_disease[str(plant_predicted_id)] plant_predicted_acc = y_pred[plant_predicted_id] # Return results as a JSON object result = { "plant_predicted_id": int(plant_predicted_id), "plant_predicted_name": plant_predicted_name, "plant_predicted_accuracy": float(plant_predicted_acc), "overall_predicted_id": int(overall_predicted_id), "overall_predicted_name": overall_predicted_name, "overall_predicted_accuracy": float(overall_predicted_acc), } return result # Gradio interface demo = gr.Interface( fn=analyse, inputs=[ gr.Image(type="numpy"), gr.Radio(["Apple", "Blueberry", "Cherry", "Corn", "Grape", "Orange", "Peach", "Pepper", "Potato", "Raspberry", "Soybean", "Squash", "Strawberry", "Tomato"]) ], outputs=gr.JSON() ) demo.launch(share=True, show_error=True)