Spaces:
Sleeping
Sleeping
File size: 3,305 Bytes
6a5c7ef 49183b2 bef811e 6a5c7ef 49183b2 01462ec 65d5227 49183b2 65d5227 49183b2 6a5c7ef 49183b2 65d5227 49183b2 65d5227 49183b2 6a5c7ef 49183b2 6a5c7ef 7bc8f9c 49183b2 bef811e 49183b2 bef811e 59ce7be bef811e 49183b2 bef811e 59ce7be bef811e 49183b2 bef811e 49183b2 5a960f6 49183b2 5a960f6 01462ec 5a960f6 49183b2 01462ec 969f366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import numpy as np
import gradio as gr
import tensorflow as tf # version 2.13.0
from keras.models import load_model
import cv2
import json
import os
def analyse(img, plant_type):
# Load label_disease.json
with open('data/label_disease.json', 'r') as f:
label_disease = json.load(f)
# Load plant_label_disease.json
with open('data/plant_label_disease.json', 'r') as f:
plant_label_disease = json.load(f)
HEIGHT = 256
WIDTH = 256
modelArchitecturePath = 'model/model_architecture.h5'
modelWeightsPath = 'model/model_weights.h5'
# Load the model
dnn_model = load_model(modelArchitecturePath, compile=False)
dnn_model.load_weights(modelWeightsPath)
# Preprocess the image
process_img = cv2.resize(img, (HEIGHT, WIDTH), interpolation=cv2.INTER_LINEAR)
process_img = process_img / 255.0
process_img = np.expand_dims(process_img, axis=0)
# Predict using the model
y_pred = dnn_model.predict(process_img)
y_pred = y_pred[0]
# Identify plant-specific predictions
plant_label_ids = plant_label_disease[plant_type.lower()]
plant_predicted_id = plant_label_ids[0]
for disease in plant_label_ids:
if y_pred[disease] > y_pred[plant_predicted_id]:
plant_predicted_id = disease
# Determine overall prediction
overall_predicted_id = int(np.argmax(y_pred))
overall_predicted_name = label_disease[str(overall_predicted_id)]
overall_predicted_confidence = float(y_pred[overall_predicted_id])
# Determine plant-specific prediction
plant_predicted_name = label_disease[str(plant_predicted_id)]
plant_predicted_confidence = float(y_pred[plant_predicted_id])
# Determine health status
is_plant_specific_healthy = "healthy" in plant_predicted_name.lower()
is_overall_healthy = "healthy" in overall_predicted_name.lower()
# Return results as a JSON object
result = {
"plant_specific_prediction_id": plant_predicted_id,
"plant_specific_prediction_name": plant_predicted_name,
"plant_specific_confidence": plant_predicted_confidence,
"is_plant_specific_healthy": is_plant_specific_healthy,
"overall_prediction_id": overall_predicted_id,
"overall_prediction_name": overall_predicted_name,
"overall_confidence": overall_predicted_confidence,
"is_overall_healthy": is_overall_healthy
}
return result
# Create Gradio interface
input_image = gr.Image(type="numpy")
plant_type = gr.Radio(["Apple", "Blueberry", "Cherry", "Corn", "Grape", "Orange", "Peach",
"Pepper", "Potato", "Raspberry", "Soybean", "Squash", "Strawberry", "Tomato"])
demo = gr.Interface(
fn=analyse,
inputs=[input_image, plant_type],
outputs=gr.JSON(),
title="Plant Disease Detection",
description="Upload an image of a plant leaf or use one of the example images below. Select the type of plant and the model will analyze it for diseases."
)
# Add examples component
examples = gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=[input_image],
label="Examples",
cache_examples=False,
examples_per_page=16
)
# Launch the interface
demo.launch(share=True, show_error=True) |