File size: 3,305 Bytes
6a5c7ef
 
49183b2
bef811e
6a5c7ef
49183b2
01462ec
65d5227
49183b2
65d5227
 
 
 
 
 
 
49183b2
6a5c7ef
 
49183b2
65d5227
49183b2
 
 
65d5227
49183b2
 
 
 
6a5c7ef
49183b2
 
6a5c7ef
7bc8f9c
49183b2
bef811e
 
 
 
 
 
49183b2
bef811e
 
59ce7be
bef811e
49183b2
bef811e
59ce7be
bef811e
 
 
 
 
49183b2
 
 
bef811e
 
 
 
 
 
 
 
49183b2
 
 
 
5a960f6
 
 
 
 
49183b2
 
5a960f6
01462ec
 
5a960f6
 
 
 
 
 
 
 
 
 
 
 
49183b2
 
01462ec
969f366
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import gradio as gr
import tensorflow as tf  # version 2.13.0
from keras.models import load_model
import cv2
import json
import os

def analyse(img, plant_type):
    # Load label_disease.json
    with open('data/label_disease.json', 'r') as f:
        label_disease = json.load(f)

    # Load plant_label_disease.json
    with open('data/plant_label_disease.json', 'r') as f:
        plant_label_disease = json.load(f)

    HEIGHT = 256
    WIDTH = 256
    modelArchitecturePath = 'model/model_architecture.h5'
    modelWeightsPath = 'model/model_weights.h5'

    # Load the model
    dnn_model = load_model(modelArchitecturePath, compile=False)
    dnn_model.load_weights(modelWeightsPath)

    # Preprocess the image
    process_img = cv2.resize(img, (HEIGHT, WIDTH), interpolation=cv2.INTER_LINEAR)
    process_img = process_img / 255.0
    process_img = np.expand_dims(process_img, axis=0)

    # Predict using the model
    y_pred = dnn_model.predict(process_img)
    y_pred = y_pred[0]

    # Identify plant-specific predictions
    plant_label_ids = plant_label_disease[plant_type.lower()]
    plant_predicted_id = plant_label_ids[0]
    for disease in plant_label_ids:
        if y_pred[disease] > y_pred[plant_predicted_id]:
            plant_predicted_id = disease

    # Determine overall prediction
    overall_predicted_id = int(np.argmax(y_pred))
    overall_predicted_name = label_disease[str(overall_predicted_id)]
    overall_predicted_confidence = float(y_pred[overall_predicted_id])

    # Determine plant-specific prediction
    plant_predicted_name = label_disease[str(plant_predicted_id)]
    plant_predicted_confidence = float(y_pred[plant_predicted_id])

    # Determine health status
    is_plant_specific_healthy = "healthy" in plant_predicted_name.lower()
    is_overall_healthy = "healthy" in overall_predicted_name.lower()

    # Return results as a JSON object
    result = {
        "plant_specific_prediction_id": plant_predicted_id,
        "plant_specific_prediction_name": plant_predicted_name,
        "plant_specific_confidence": plant_predicted_confidence,
        "is_plant_specific_healthy": is_plant_specific_healthy,
        "overall_prediction_id": overall_predicted_id,
        "overall_prediction_name": overall_predicted_name,
        "overall_confidence": overall_predicted_confidence,
        "is_overall_healthy": is_overall_healthy
    }

    return result

# Create Gradio interface
input_image = gr.Image(type="numpy")
plant_type = gr.Radio(["Apple", "Blueberry", "Cherry", "Corn", "Grape", "Orange", "Peach",
                     "Pepper", "Potato", "Raspberry", "Soybean", "Squash", "Strawberry", "Tomato"])

demo = gr.Interface(
    fn=analyse,
    inputs=[input_image, plant_type],
    outputs=gr.JSON(),
    title="Plant Disease Detection",
    description="Upload an image of a plant leaf or use one of the example images below. Select the type of plant and the model will analyze it for diseases."
)

# Add examples component
examples = gr.Examples(
    examples=[
        os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
    ],
    inputs=[input_image],
    label="Examples",
    cache_examples=False,
    examples_per_page=16
)

# Launch the interface
demo.launch(share=True, show_error=True)