Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,16 +21,10 @@ SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
|
|
| 21 |
RANGE_NAME = 'Sheet1!A1:E'
|
| 22 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
| 23 |
|
|
|
|
| 24 |
csv_file_path = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\900_products_dataset.csv"
|
| 25 |
|
| 26 |
-
persist_dir = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\chromadb_storage"
|
| 27 |
-
os.makedirs(persist_dir, exist_ok=True) # Ensure the directory exists
|
| 28 |
-
print(f"Persistence directory: {persist_dir}")
|
| 29 |
|
| 30 |
-
chroma_client = Client(Settings(
|
| 31 |
-
persist_directory=persist_dir, # Use /tmp/ for Hugging Face Spaces
|
| 32 |
-
allow_reset=True # Enable reset to prevent database issues
|
| 33 |
-
))
|
| 34 |
class CustomEmbeddingFunction:
|
| 35 |
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
| 36 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -43,12 +37,9 @@ class CustomEmbeddingFunction:
|
|
| 43 |
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 44 |
return embeddings
|
| 45 |
|
| 46 |
-
sentiment_pipeline = pipeline("sentiment-analysis")
|
| 47 |
-
# chroma_client = Client(Settings(
|
| 48 |
-
# persist_directory="/tmp/chromadb_storage", # Directory to store ChromaDB data
|
| 49 |
-
# allow_reset=True # Enable reset to prevent database issues
|
| 50 |
-
# ))
|
| 51 |
|
|
|
|
|
|
|
| 52 |
embedding_fn = CustomEmbeddingFunction()
|
| 53 |
collection_name = "crm_data"
|
| 54 |
|
|
@@ -57,20 +48,6 @@ try:
|
|
| 57 |
except Exception:
|
| 58 |
collection = chroma_client.create_collection(collection_name)
|
| 59 |
|
| 60 |
-
# chroma_client = Client(Settings(persist_directory="chromadb_storage"))
|
| 61 |
-
# chroma_client = Client(Settings(
|
| 62 |
-
# persist_directory="/home/user/app/chromadb_storage",
|
| 63 |
-
# tenant="default_tenant",
|
| 64 |
-
# database="default_db"
|
| 65 |
-
# ))
|
| 66 |
-
# embedding_fn = CustomEmbeddingFunction()
|
| 67 |
-
# collection_name = "crm_data"
|
| 68 |
-
|
| 69 |
-
# try:
|
| 70 |
-
# collection = chroma_client.get_collection(collection_name)
|
| 71 |
-
# except Exception:
|
| 72 |
-
# collection = chroma_client.create_collection(collection_name)
|
| 73 |
-
|
| 74 |
def get_google_sheets_service():
|
| 75 |
creds = Credentials.from_service_account_file(
|
| 76 |
SERVICE_ACCOUNT_FILE,
|
|
@@ -107,7 +84,7 @@ def update_google_sheet(transcribed_text, sentiment,objection, recommendations,o
|
|
| 107 |
|
| 108 |
load_dotenv()
|
| 109 |
hf_token= os.getenv("HUGGINGFACE_TOKEN")
|
| 110 |
-
|
| 111 |
if not hf_token:
|
| 112 |
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
|
| 113 |
print(f"API Key Loaded: {hf_token[:5]}****")
|
|
@@ -202,6 +179,7 @@ def query_crm_data_with_context(prompt, top_k=3):
|
|
| 202 |
return ["Error in querying recommendations."]
|
| 203 |
|
| 204 |
|
|
|
|
| 205 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 206 |
faiss_index = faiss.IndexFlatL2(384)
|
| 207 |
|
|
|
|
| 21 |
RANGE_NAME = 'Sheet1!A1:E'
|
| 22 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
| 23 |
|
| 24 |
+
|
| 25 |
csv_file_path = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\900_products_dataset.csv"
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
class CustomEmbeddingFunction:
|
| 29 |
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
| 30 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 37 |
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 38 |
return embeddings
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
| 42 |
+
chroma_client = Client(Settings(persist_directory="chromadb_storage"))
|
| 43 |
embedding_fn = CustomEmbeddingFunction()
|
| 44 |
collection_name = "crm_data"
|
| 45 |
|
|
|
|
| 48 |
except Exception:
|
| 49 |
collection = chroma_client.create_collection(collection_name)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def get_google_sheets_service():
|
| 52 |
creds = Credentials.from_service_account_file(
|
| 53 |
SERVICE_ACCOUNT_FILE,
|
|
|
|
| 84 |
|
| 85 |
load_dotenv()
|
| 86 |
hf_token= os.getenv("HUGGINGFACE_TOKEN")
|
| 87 |
+
login(token=hf_token)
|
| 88 |
if not hf_token:
|
| 89 |
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
|
| 90 |
print(f"API Key Loaded: {hf_token[:5]}****")
|
|
|
|
| 179 |
return ["Error in querying recommendations."]
|
| 180 |
|
| 181 |
|
| 182 |
+
|
| 183 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 184 |
faiss_index = faiss.IndexFlatL2(384)
|
| 185 |
|