Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,16 +21,10 @@ SPREADSHEET_ID = "1CsBub3Jlwyo7WHMQty6SDnBShIZMjl5XTVSoOKrxZhc"
|
|
21 |
RANGE_NAME = 'Sheet1!A1:E'
|
22 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
23 |
|
|
|
24 |
csv_file_path = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\900_products_dataset.csv"
|
25 |
|
26 |
-
persist_dir = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\chromadb_storage"
|
27 |
-
os.makedirs(persist_dir, exist_ok=True) # Ensure the directory exists
|
28 |
-
print(f"Persistence directory: {persist_dir}")
|
29 |
|
30 |
-
chroma_client = Client(Settings(
|
31 |
-
persist_directory=persist_dir, # Use /tmp/ for Hugging Face Spaces
|
32 |
-
allow_reset=True # Enable reset to prevent database issues
|
33 |
-
))
|
34 |
class CustomEmbeddingFunction:
|
35 |
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
36 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -43,12 +37,9 @@ class CustomEmbeddingFunction:
|
|
43 |
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
44 |
return embeddings
|
45 |
|
46 |
-
sentiment_pipeline = pipeline("sentiment-analysis")
|
47 |
-
# chroma_client = Client(Settings(
|
48 |
-
# persist_directory="/tmp/chromadb_storage", # Directory to store ChromaDB data
|
49 |
-
# allow_reset=True # Enable reset to prevent database issues
|
50 |
-
# ))
|
51 |
|
|
|
|
|
52 |
embedding_fn = CustomEmbeddingFunction()
|
53 |
collection_name = "crm_data"
|
54 |
|
@@ -57,20 +48,6 @@ try:
|
|
57 |
except Exception:
|
58 |
collection = chroma_client.create_collection(collection_name)
|
59 |
|
60 |
-
# chroma_client = Client(Settings(persist_directory="chromadb_storage"))
|
61 |
-
# chroma_client = Client(Settings(
|
62 |
-
# persist_directory="/home/user/app/chromadb_storage",
|
63 |
-
# tenant="default_tenant",
|
64 |
-
# database="default_db"
|
65 |
-
# ))
|
66 |
-
# embedding_fn = CustomEmbeddingFunction()
|
67 |
-
# collection_name = "crm_data"
|
68 |
-
|
69 |
-
# try:
|
70 |
-
# collection = chroma_client.get_collection(collection_name)
|
71 |
-
# except Exception:
|
72 |
-
# collection = chroma_client.create_collection(collection_name)
|
73 |
-
|
74 |
def get_google_sheets_service():
|
75 |
creds = Credentials.from_service_account_file(
|
76 |
SERVICE_ACCOUNT_FILE,
|
@@ -107,7 +84,7 @@ def update_google_sheet(transcribed_text, sentiment,objection, recommendations,o
|
|
107 |
|
108 |
load_dotenv()
|
109 |
hf_token= os.getenv("HUGGINGFACE_TOKEN")
|
110 |
-
|
111 |
if not hf_token:
|
112 |
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
|
113 |
print(f"API Key Loaded: {hf_token[:5]}****")
|
@@ -202,6 +179,7 @@ def query_crm_data_with_context(prompt, top_k=3):
|
|
202 |
return ["Error in querying recommendations."]
|
203 |
|
204 |
|
|
|
205 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
206 |
faiss_index = faiss.IndexFlatL2(384)
|
207 |
|
|
|
21 |
RANGE_NAME = 'Sheet1!A1:E'
|
22 |
SERVICE_ACCOUNT_FILE = r"C:\Users\bhagy\AI\credentials.json"
|
23 |
|
24 |
+
|
25 |
csv_file_path = r"C:\Users\bhagy\OneDrive\Desktop\INFOSYS PROJECT\900_products_dataset.csv"
|
26 |
|
|
|
|
|
|
|
27 |
|
|
|
|
|
|
|
|
|
28 |
class CustomEmbeddingFunction:
|
29 |
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
30 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
37 |
embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
38 |
return embeddings
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
42 |
+
chroma_client = Client(Settings(persist_directory="chromadb_storage"))
|
43 |
embedding_fn = CustomEmbeddingFunction()
|
44 |
collection_name = "crm_data"
|
45 |
|
|
|
48 |
except Exception:
|
49 |
collection = chroma_client.create_collection(collection_name)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def get_google_sheets_service():
|
52 |
creds = Credentials.from_service_account_file(
|
53 |
SERVICE_ACCOUNT_FILE,
|
|
|
84 |
|
85 |
load_dotenv()
|
86 |
hf_token= os.getenv("HUGGINGFACE_TOKEN")
|
87 |
+
login(token=hf_token)
|
88 |
if not hf_token:
|
89 |
raise ValueError("Hugging Face API key not found! Please set the HUGGINGFACE_TOKEN variable.")
|
90 |
print(f"API Key Loaded: {hf_token[:5]}****")
|
|
|
179 |
return ["Error in querying recommendations."]
|
180 |
|
181 |
|
182 |
+
|
183 |
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
184 |
faiss_index = faiss.IndexFlatL2(384)
|
185 |
|