FGPT / app.py
bhagwandas's picture
Update app.py
75b6b4d verified
raw
history blame
4.23 kB
# app.py - FactoryGPT 5.0: Predictive Maintenance + Role Chat (No 3D Map)
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from sklearn.ensemble import IsolationForest
# Page setup
st.set_page_config(
page_title="FactoryGPT 5.0 – Predict, Perfect, and Connect",
page_icon="🧠",
layout="wide"
)
# Dark mode CSS
st.markdown("""
<style>
html, body, [class*="css"] {
font-family: 'Segoe UI', sans-serif;
background-color: #0f1117;
color: #f0f0f0;
}
.stTextInput>div>div>input,
.stSelectbox>div>div>div>div {
background-color: #1a1c23;
color: #fff;
}
.stDataFrame .blank {
background-color: #0f1117 !important;
}
</style>
""", unsafe_allow_html=True)
# Title
st.markdown("""
<div style='text-align: center;'>
<h1 style='color: #58a6ff;'>🏭 FactoryGPT 5.0 – Predict, Perfect, and Connect</h1>
<p style='color: #bbb;'>AI-Powered Predictive Maintenance | Human-in-the-Loop Decision Support</p>
<hr style='border-top: 2px solid #888;'>
</div>
""", unsafe_allow_html=True)
# Load models
EMBED_MODEL = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
GEN_MODEL = pipeline('text2text-generation', model='google/flan-t5-base')
# File upload
uploaded_file = st.sidebar.file_uploader("πŸ“‚ Upload your sensor CSV", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
st.success("βœ… Sensor log loaded!")
st.markdown("### 🧾 Sensor Log Preview")
st.dataframe(df.head(), use_container_width=True)
# RAG Embeddings
def convert_to_chunks(df):
return [f"[Log {i}] " + ", ".join([f"{col}: {row[col]:.2f}" for col in numeric_cols]) for i, row in df.iterrows()]
if 'chunks' not in st.session_state or 'embeddings' not in st.session_state:
chunks = convert_to_chunks(df)
embeddings = EMBED_MODEL.encode(chunks)
st.session_state.chunks = chunks
st.session_state.embeddings = embeddings
# Equipment condition via Isolation Forest
st.markdown("### βš™οΈ Equipment Condition Status")
iso = IsolationForest(contamination=0.02)
labels = iso.fit_predict(df[numeric_cols])
df['status'] = ['❌ No Function' if x == -1 else 'βœ… Functional' for x in labels]
df['maintenance'] = ['πŸ”§ Needs Maintenance' if x == -1 else '🟒 Stable' for x in labels]
st.dataframe(df[['status', 'maintenance'] + numeric_cols].head(), use_container_width=True)
# Role-based Assistant
st.markdown("### πŸ’¬ Role-Based Chat Assistant")
roles = {
"Operator": "You are a machine operator. Check if equipment is running properly. If not, flag it immediately.",
"Maintenance": "You are a maintenance technician. Assess faulty logs and provide service insights.",
"Engineer": "You are a systems engineer. Offer data-backed advice and failure diagnostics."
}
role = st.selectbox("πŸ‘· Choose your role", list(roles.keys()))
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
user_input = st.text_input("πŸ—¨οΈ Ask FactoryGPT about machine status or maintenance needs")
if user_input:
query_vec = EMBED_MODEL.encode([user_input])[0]
sims = np.dot(st.session_state.embeddings, query_vec)
top_idxs = np.argsort(sims)[-3:][::-1]
context = "\n".join([st.session_state.chunks[i] for i in top_idxs])
system_prompt = roles[role]
full_prompt = f"{system_prompt}\n\nSensor Log Context:\n{context}\n\nUser Question: {user_input}"
reply = GEN_MODEL(full_prompt, max_length=256)[0]['generated_text']
st.session_state.chat_history.append((f"πŸ‘€ You ({role})", user_input))
st.session_state.chat_history.append(("πŸ€– FactoryGPT", reply))
for speaker, msg in st.session_state.chat_history[-10:]:
st.markdown(f"<div style='margin-bottom: 10px;'><b>{speaker}:</b> {msg}</div>", unsafe_allow_html=True)
else:
st.info("πŸ‘ˆ Upload a CSV file with sensor logs to begin.")