Spaces:
Sleeping
Sleeping
File size: 3,687 Bytes
0cd7d19 c2295d1 5ea6795 c2295d1 5ea6795 0cd7d19 5ea6795 0cd7d19 5ea6795 6141da1 c2295d1 0cd7d19 c2295d1 0cd7d19 c2295d1 0cd7d19 6141da1 0cd7d19 6141da1 5ea6795 b365915 5ea6795 c2295d1 0cd7d19 c2295d1 0cd7d19 ff73cbe 0cd7d19 ff73cbe 0cd7d19 ff73cbe 0cd7d19 ff73cbe 0cd7d19 ff73cbe 6141da1 0cd7d19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# app.py - FactoryRAG+: Fancy Lite Version with Animation & Chatbot Only
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from sklearn.ensemble import IsolationForest
# Page config with emoji + layout
st.set_page_config(page_title="FactoryRAG+ Assistant", page_icon="π§ ", layout="wide")
# Animated header
st.markdown("""
<h1 style='text-align: center; color: #3498db; font-size: 48px;'>
π FactoryRAG+ <span style="font-size: 28px;">| AI Assistant for Smart Sensors</span>
</h1>
<hr style='border-top: 2px solid #bbb;' />
""", unsafe_allow_html=True)
# Load models
EMBED_MODEL = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
GEN_MODEL = pipeline('text2text-generation', model='google/flan-t5-base')
# Sidebar upload
st.sidebar.markdown("### π Upload Sensor Log")
uploaded_file = st.sidebar.file_uploader("Upload a CSV sensor file", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
st.success("β
Data uploaded successfully!")
# Animated section
st.markdown("### π Sensor Log Preview")
st.dataframe(df.head())
# Convert to text chunks
def convert_to_chunks(df):
chunks = []
for idx, row in df.iterrows():
log_text = f"[Log {idx}] " + ", ".join([f"{col}: {row[col]:.2f}" for col in numeric_cols])
chunks.append(log_text)
return chunks
if 'chunks' not in st.session_state or 'embeddings' not in st.session_state:
chunks = convert_to_chunks(df)
embeddings = EMBED_MODEL.encode(chunks)
st.session_state.chunks = chunks
st.session_state.embeddings = embeddings
# --- Anomaly Detection ---
st.markdown("### π¨ Real-Time Anomaly Scanner")
iso = IsolationForest(contamination=0.02)
labels = iso.fit_predict(df[numeric_cols])
df['anomaly'] = ['β Anomaly' if x == -1 else 'β
Normal' for x in labels]
st.dataframe(df[df['anomaly'].str.contains("β")].head())
# --- Chatbot Assistant ---
st.markdown("### π¬ Ask FactoryGPT")
roles = {
"Operator": "You are a machine operator. Provide practical insights and safety warnings.",
"Maintenance": "You are a maintenance technician. Suggest inspections and likely causes of sensor anomalies.",
"Engineer": "You are a control systems engineer. Offer analytical interpretations and system-level advice."
}
role = st.selectbox("π· Select your role", list(roles.keys()))
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
user_input = st.text_input("π¨οΈ Ask about the sensor log...", key="chat_input")
if user_input:
query_vec = EMBED_MODEL.encode([user_input])[0]
sims = np.dot(st.session_state.embeddings, query_vec)
top_idxs = np.argsort(sims)[-3:][::-1]
context = "\n".join([st.session_state.chunks[i] for i in top_idxs])
system_prompt = roles[role]
full_prompt = f"{system_prompt}\n\nSensor Context:\n{context}\n\nUser Question: {user_input}"
reply = GEN_MODEL(full_prompt, max_length=256)[0]['generated_text']
st.session_state.chat_history.append((f"π€ You ({role})", user_input))
st.session_state.chat_history.append(("π€ FactoryGPT", reply))
for speaker, msg in st.session_state.chat_history[-10:]:
st.markdown(f"<div style='margin-bottom: 10px;'><b>{speaker}:</b> {msg}</div>", unsafe_allow_html=True)
else:
st.info("π Please upload a sensor CSV file to begin.")
|