Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install Required Libraries (if not already installed)
|
2 |
+
# !pip install groq sentence-transformers faiss-cpu gradio pandas numpy langchain langchain-community langchain-groq python-dotenv
|
3 |
+
|
4 |
+
# Import Necessary Libraries
|
5 |
+
import os
|
6 |
+
import pandas as pd
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
import faiss
|
9 |
+
import numpy as np
|
10 |
+
import gradio as gr
|
11 |
+
from groq import Groq
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.document_loaders import DataFrameLoader
|
15 |
+
from langchain.vectorstores import FAISS
|
16 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
17 |
+
from langchain_groq import ChatGroq # Updated Import
|
18 |
+
|
19 |
+
# Step 1: Set up API Key for Groq
|
20 |
+
os.environ["GROQ_API_KEY"] = "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"
|
21 |
+
|
22 |
+
# Initialize Groq Client using LangChain Wrapper
|
23 |
+
llm = ChatGroq(
|
24 |
+
groq_api_key=os.environ.get("GROQ_API_KEY"),
|
25 |
+
model="llama3-8b-8192"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Step 2: Load Dataset
|
29 |
+
df = pd.read_csv('environmental_impact_assessment.csv')
|
30 |
+
|
31 |
+
# Step 3: Prepare Text Data for RAG
|
32 |
+
# Create a 'text' column combining relevant columns
|
33 |
+
df['text'] = (
|
34 |
+
"Project Type: " + df['Project Type'].astype(str) + "; " +
|
35 |
+
"Land Use: " + df['Land Use (sq km)'].astype(str) + "; " +
|
36 |
+
"Emissions: " + df['Emissions (tons/year)'].astype(str) + "; " +
|
37 |
+
"Water Requirement: " + df['Water Requirement (liters/day)'].astype(str) + "; " +
|
38 |
+
"Mitigation Measures: " + df['Mitigation Measures'].astype(str) + "; " +
|
39 |
+
"Legal Compliance: " + df['Legal Compliance'].astype(str)
|
40 |
+
)
|
41 |
+
|
42 |
+
# Step 4: Create Vector Store for Retrieval
|
43 |
+
loader = DataFrameLoader(df, page_content_column="text")
|
44 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # Explicit model specified
|
45 |
+
vectorstore = FAISS.from_documents(loader.load(), embeddings)
|
46 |
+
|
47 |
+
# Step 5: Build RAG QA Chain
|
48 |
+
qa_chain = RetrievalQA.from_chain_type(
|
49 |
+
llm=llm,
|
50 |
+
chain_type="stuff",
|
51 |
+
retriever=vectorstore.as_retriever()
|
52 |
+
)
|
53 |
+
|
54 |
+
# Step 6: Define Gradio Interface
|
55 |
+
def generate_report(project_type, land_use, emissions, water_requirement):
|
56 |
+
"""
|
57 |
+
Generate Environmental Impact Assessment Report using Groq API and RAG.
|
58 |
+
"""
|
59 |
+
query = (
|
60 |
+
f"Generate an environmental impact assessment report for a project with the following details:\n"
|
61 |
+
f"Project Type: {project_type}, Land Use: {land_use} sq km, Emissions: {emissions} tons/year, "
|
62 |
+
f"Water Requirement: {water_requirement} liters/day."
|
63 |
+
)
|
64 |
+
try:
|
65 |
+
response = qa_chain.run(query)
|
66 |
+
return response
|
67 |
+
except Exception as e:
|
68 |
+
return f"An error occurred: {e}"
|
69 |
+
|
70 |
+
# Step 7: Build Gradio Interface
|
71 |
+
iface = gr.Interface(
|
72 |
+
fn=generate_report,
|
73 |
+
inputs=[
|
74 |
+
gr.Textbox(label="Project Type"),
|
75 |
+
gr.Number(label="Land Use (sq km)"),
|
76 |
+
gr.Number(label="Emissions (tons/year)"),
|
77 |
+
gr.Number(label="Water Requirement (liters/day)")
|
78 |
+
],
|
79 |
+
outputs=gr.Textbox(label="Generated Report"),
|
80 |
+
title="Environmental Impact Assessment Report Generator",
|
81 |
+
description="Enter project details to generate an environmental impact assessment report using RAG and Groq's API."
|
82 |
+
)
|
83 |
+
|
84 |
+
# Step 8: Launch the Gradio App
|
85 |
+
iface.launch()
|