Spaces:
Runtime error
Runtime error
File size: 6,132 Bytes
eb4710d f9dd31c eb4710d f9dd31c 0fde90f f9dd31c eb4710d f9dd31c 0fde90f f9dd31c 0fde90f f9dd31c eb4710d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
from typing import Any, List, Dict
from collections import defaultdict
import pandas as pd
dirname = os.path.dirname(__file__)
css_filename = os.path.join(dirname, "tapas-styles.css")
with open(css_filename) as f:
css = f.read()
def HTMLBody(table_html: str, css_styles=css) -> str:
"""
Generates the full html with css from a list of html spans
Args:
children (:obj:`List[str]`):
A list of strings, assumed to be html elements
css_styles (:obj:`str`, `optional`):
Optional alternative implementation of the css
Returns:
:obj:`str`: An HTML string with style markup
"""
return f"""
<html>
<head>
<style>
{css_styles}
</style>
</head>
<body>
<div class="tokenized-text" dir=auto>
{table_html}
</div>
</body>
</html>
"""
class TapasVisualizer:
def __init__(self, tokenizer) -> None:
self.tokenizer = tokenizer
def normalize_token_str(self, token_str: str) -> str:
return token_str.replace("##", "")
def style_span(self, span_text: str, css_classes: List[str]) -> str:
css = f'''class="{' '.join(css_classes)}"'''
return f"<span {css} >{span_text}</span>"
def text_to_html(self, org_text: str, tokens: List[str]) -> str:
"""Create html based on the original text and its tokens.
Note: The tokens need to be in same order as in the original text
Args:
org_text (str): Original string before tokenization
tokens (List[str]): The tokens of org_text
Returns:
str: html with styling for the tokens
"""
if len(tokens) == 0:
print(f'Empty tokens for: {org_text}')
return ''
cur_token_id = 0
cur_token = self.normalize_token_str(tokens[cur_token_id])
# Loop through each character
next_start = 0
last_end = 0
spans = []
while next_start < len(org_text):
candidate = org_text[next_start: next_start + len(cur_token)]
# The tokenizer performs lowercasing; so check against lowercase
if candidate.lower() == cur_token:
if last_end != next_start:
# There was token-less text (probably whitespace)
# in the middle
spans.append(self.style_span(org_text[last_end: next_start], ['non-token']))
odd_or_even = 'even-token' if cur_token_id % 2 == 0 else 'odd-token'
spans.append(self.style_span(candidate, ['token', odd_or_even]))
next_start += len(cur_token)
last_end = next_start
cur_token_id += 1
if cur_token_id >= len(tokens):
break
cur_token = self.normalize_token_str(tokens[cur_token_id])
else:
next_start += 1
if last_end != len(org_text):
spans.append(self.style_span(org_text[last_end: next_start], ['non-token']))
return spans
def cells_to_html(self,
cell_vals: List[List[str]],
cell_tokens: Dict,
row_id_start: int=0,
cell_element: str="td",
cumulative_cnt: int=0,
table_html: str="") -> str:
for row_id, row in enumerate(cell_vals, start=row_id_start):
row_html = ""
row_token_cnt = 0
for col_id, cell in enumerate(row, start=1):
cur_cell_tokens = cell_tokens[(row_id, col_id)]
span_htmls = self.text_to_html(cell, cur_cell_tokens)
cell_html = "".join(span_htmls)
row_html += f"<{cell_element}>{cell_html}</{cell_element}>"
row_token_cnt += len(cur_cell_tokens)
cumulative_cnt += row_token_cnt
cnt_html = (f'<td style="border: none;" align="right">{self.style_span(str(cumulative_cnt), ["non-token", "count"])}</td>'
f'<td style="border: none;" align="right">{self.style_span(f"<+{row_token_cnt}", ["non-token", "count"])}</td>')
row_html = cnt_html + row_html
table_html += f'<tr>{row_html}</tr>'
return table_html, cumulative_cnt
def __call__(self, table: pd.DataFrame) -> Any:
tokenized = self.tokenizer(table)
cell_tokens = defaultdict(list)
for id_ind, input_id in enumerate(tokenized['input_ids']):
input_id = int(input_id)
# 'prev_label', 'column_rank', 'inv_column_rank', 'numeric_relation' not required
segment_id, col_id, row_id, *_ = tokenized['token_type_ids'][id_ind]
token_text = self.tokenizer._convert_id_to_token(input_id)
if int(segment_id) == 1:
cell_tokens[(row_id, col_id)].append(token_text)
table_html = '<tr><td style="border: none;" colspan="2" align="left">#Tokens</td></tr>'
table_html, cumulative_cnt = self.cells_to_html(cell_vals=[table.columns],
cell_tokens=cell_tokens,
row_id_start=0,
cell_element="th",
cumulative_cnt=0,
table_html=table_html)
table_html, cumulative_cnt = self.cells_to_html(cell_vals=table.values,
cell_tokens=cell_tokens,
row_id_start=1,
cell_element="td",
cumulative_cnt=cumulative_cnt,
table_html=table_html)
table_html = f'<table>{table_html}</table>'
return HTMLBody(table_html)
|