import os import requests from tqdm import tqdm from datasets import load_dataset import numpy as np import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input from tensorflow.keras.preprocessing import image from sklearn.neighbors import NearestNeighbors import joblib from PIL import UnidentifiedImageError, Image import gradio as gr import matplotlib.pyplot as plt # Ensure TensorFlow uses GPU print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) assert len(tf.config.list_physical_devices('GPU')) > 0, "No GPU available!" # Load the dataset dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k") # Take a subset of the dataset subset_size = 10000 dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size)) # Directory to save images image_dir = 'civitai_images' os.makedirs(image_dir, exist_ok=True) # Load the ResNet50 model pretrained on ImageNet with tf.device('/GPU:0'): model = ResNet50(weights='imagenet', include_top=False, pooling='avg') # Function to extract features def extract_features(img_path, model): img = image.load_img(img_path, target_size=(224, 224)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) with tf.device('/GPU:0'): features = model.predict(img_array) return features.flatten() # Extract features for a sample of images features = [] image_paths = [] model_names = [] for sample in tqdm(dataset_subset): img_url = sample['url'] # Adjust based on the correct column name model_name = sample['Model'] # Adjust based on the correct column name img_path = os.path.join(image_dir, os.path.basename(img_url)) # Download the image try: response = requests.get(img_url) response.raise_for_status() # Check if the download was successful if 'image' not in response.headers['Content-Type']: raise ValueError("URL does not contain an image") with open(img_path, 'wb') as f: f.write(response.content) # Extract features try: img_features = extract_features(img_path, model) features.append(img_features) image_paths.append(img_path) model_names.append(model_name) except UnidentifiedImageError: print(f"UnidentifiedImageError: Skipping file {img_path}") os.remove(img_path) except requests.exceptions.RequestException as e: print(f"RequestException: Failed to download {img_url} - {e}") # Convert features to numpy array features = np.array(features) # Build the NearestNeighbors model nbrs = NearestNeighbors(n_neighbors=5, algorithm='ball_tree').fit(features) # Save the model and features joblib.dump(nbrs, 'nearest_neighbors_model.pkl') np.save('image_features.npy', features) np.save('image_paths.npy', image_paths) np.save('model_names.npy', model_names) # Load the NearestNeighbors model and features nbrs = joblib.load('nearest_neighbors_model.pkl') features = np.load('image_features.npy') image_paths = np.load('image_paths.npy', allow_pickle=True) model_names = np.load('model_names.npy', allow_pickle=True) # Function to get recommendations def get_recommendations(img_path, model, nbrs, image_paths, model_names, n_neighbors=5): img_features = extract_features(img_path, model) distances, indices = nbrs.kneighbors([img_features]) recommended_images = [image_paths[idx] for idx in indices.flatten()] recommended_model_names = [model_names[idx] for idx in indices.flatten()] recommended_distances = distances.flatten() return recommended_images, recommended_model_names, recommended_distances def recommend(image): # Save uploaded image to a path image_path = "uploaded_image.jpg" image.save(image_path) recommended_images, recommended_model_names, recommended_distances = get_recommendations(image_path, model, nbrs, image_paths, model_names) result = list(zip(recommended_images, recommended_model_names, recommended_distances)) # Display images with matplotlib display_images(recommended_images, recommended_model_names, recommended_distances) return result def display_images(image_paths, model_names, distances): plt.figure(figsize=(20, 10)) for i, (img_path, model_name, distance) in enumerate(zip(image_paths, model_names, distances)): img = Image.open(img_path) plt.subplot(1, len(image_paths), i+1) plt.imshow(img) plt.title(f'{model_name}\nDistance: {distance:.2f}', fontsize=12) plt.axis('off') plt.show() # Gradio interface interface = gr.Interface( fn=recommend, inputs=gr.inputs.Image(type="pil"), outputs="text", # Outputs the list of recommended images, models, and distances title="Image Recommendation System", description="Upload an image and get 5 recommended similar images with model names and distances." ) interface.launch()