File size: 4,721 Bytes
6a4d9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef5a6e
6a4d9dc
 
 
 
 
 
 
b242893
6a4d9dc
 
 
 
 
 
 
b242893
6a4d9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6d2088
 
 
b242893
e6d2088
 
b242893
e6d2088
 
 
 
68ed7d4
e6d2088
6a4d9dc
 
 
68ed7d4
e6d2088
6a4d9dc
 
 
 
e6d2088
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import requests
from tqdm import tqdm
from datasets import load_dataset
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image
from sklearn.neighbors import NearestNeighbors
import joblib
from PIL import UnidentifiedImageError, Image
import gradio as gr
import matplotlib.pyplot as plt

# Load the dataset
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k")

# Take a subset of the dataset
subset_size = 50
dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size))

# Directory to save images
image_dir = 'civitai_images'
os.makedirs(image_dir, exist_ok=True)

# Load the ResNet50 model pretrained on ImageNet
model = ResNet50(weights='imagenet', include_top=False, pooling='avg')

# Function to extract features
def extract_features(img_path, model):
    img = image.load_img(img_path, target_size=(224, 224))
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = preprocess_input(img_array)
    features = model.predict(img_array)
    return features.flatten()

# Extract features for a sample of images
features = []
image_paths = []
model_names = []

for sample in tqdm(dataset_subset):
    img_url = sample['url']  # Adjust based on the correct column name
    model_name = sample['Model']  # Adjust based on the correct column name
    img_path = os.path.join(image_dir, os.path.basename(img_url))

    # Download the image
    try:
        response = requests.get(img_url)
        response.raise_for_status()  # Check if the download was successful

        if 'image' not in response.headers['Content-Type']:
            raise ValueError("URL does not contain an image")

        with open(img_path, 'wb') as f:
            f.write(response.content)

        # Extract features
        try:
            img_features = extract_features(img_path, model)
            features.append(img_features)
            image_paths.append(img_path)
            model_names.append(model_name)
        except UnidentifiedImageError:
            print(f"UnidentifiedImageError: Skipping file {img_path}")
            os.remove(img_path)

    except requests.exceptions.RequestException as e:
        print(f"RequestException: Failed to download {img_url} - {e}")

# Convert features to numpy array
features = np.array(features)

# Build the NearestNeighbors model
nbrs = NearestNeighbors(n_neighbors=5, algorithm='ball_tree').fit(features)

# Save the model and features
joblib.dump(nbrs, 'nearest_neighbors_model.pkl')
np.save('image_features.npy', features)
np.save('image_paths.npy', image_paths)
np.save('model_names.npy', model_names)

# Load the NearestNeighbors model and features
nbrs = joblib.load('nearest_neighbors_model.pkl')
features = np.load('image_features.npy')
image_paths = np.load('image_paths.npy', allow_pickle=True)
model_names = np.load('model_names.npy', allow_pickle=True)

# Function to get recommendations
def get_recommendations(img_path, model, nbrs, image_paths, model_names, n_neighbors=5):
    img_features = extract_features(img_path, model)
    distances, indices = nbrs.kneighbors([img_features])

    recommended_images = [image_paths[idx] for idx in indices.flatten()]
    recommended_model_names = [model_names[idx] for idx in indices.flatten()]
    recommended_distances = distances.flatten()

    return recommended_images, recommended_model_names, recommended_distances

def recommend(image):
    # Save uploaded image to a path
    image_path = "uploaded_image.jpg"
    image.save(image_path)
    
    recommended_images, recommended_model_names, recommended_distances = get_recommendations(image_path, model, nbrs, image_paths, model_names)
    result = list(zip(recommended_images, recommended_model_names, recommended_distances))
    
    # Prepare HTML output for Gradio
    html_output = ""
    for img_path, model_name, distance in zip(recommended_images, recommended_model_names, recommended_distances):
        img_path = img_path.replace('\\', '/')
        html_output += f"""
        <div style='display:inline-block; text-align:center; margin:10px;'>
            <img src='file/{img_path}' style='width:200px; height:200px;'><br>
            <b>Model Name:</b> {model_name}<br>
            <b>Distance:</b> {distance:.2f}<br>
        </div>
        """
    
    return html_output

interface = gr.Interface(
    fn=recommend,
    inputs=gr.Image(type="pil"),
    outputs=gr.HTML(),  # Use HTML output for better formatting
    title="Image Recommendation System",
    description="Upload an image and get 5 recommended similar images with model names and distances."
)

interface.launch()