Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -39,16 +39,22 @@ def make_link(mname):
|
|
| 39 |
|
| 40 |
def get_plots(task):
|
| 41 |
df = pd.read_csv('data/energy/' + task)
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 44 |
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
fig = px.scatter(
|
| 48 |
df,
|
| 49 |
-
x="total_gpu_energy", #
|
| 50 |
-
y="Display Model",
|
| 51 |
-
color="energy_score", #
|
| 52 |
custom_data=['energy_score'],
|
| 53 |
height=500,
|
| 54 |
width=800,
|
|
@@ -70,18 +76,19 @@ def get_all_plots():
|
|
| 70 |
df = pd.read_csv('data/energy/' + task)
|
| 71 |
if df.columns[0].startswith("Unnamed:"):
|
| 72 |
df = df.iloc[:, 1:]
|
| 73 |
-
|
|
|
|
| 74 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 75 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 76 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 77 |
|
| 78 |
-
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 79 |
|
| 80 |
fig = px.scatter(
|
| 81 |
all_df,
|
| 82 |
-
x="total_gpu_energy", #
|
| 83 |
y="Display Model",
|
| 84 |
-
color="energy_score", #
|
| 85 |
custom_data=['energy_score'],
|
| 86 |
height=500,
|
| 87 |
width=800,
|
|
@@ -241,9 +248,10 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 241 |
with gr.TabItem("All Tasks 💡"):
|
| 242 |
with gr.Row():
|
| 243 |
with gr.Column():
|
| 244 |
-
plot
|
|
|
|
| 245 |
with gr.Column():
|
| 246 |
-
table = gr.Dataframe(get_all_model_names, datatype="markdown")
|
| 247 |
|
| 248 |
with gr.Accordion("📙 Citation", open=False):
|
| 249 |
citation_button = gr.Textbox(
|
|
@@ -257,4 +265,4 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 257 |
"""Last updated: February 2025"""
|
| 258 |
)
|
| 259 |
|
| 260 |
-
demo.launch()
|
|
|
|
| 39 |
|
| 40 |
def get_plots(task):
|
| 41 |
df = pd.read_csv('data/energy/' + task)
|
| 42 |
+
# Remove extra unnamed column if present
|
| 43 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 44 |
+
df = df.iloc[:, 1:]
|
| 45 |
+
|
| 46 |
+
# Convert energy_score to int and then to str so it's treated as categorical
|
| 47 |
+
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
| 48 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 49 |
|
| 50 |
+
# Update color_map keys to be strings
|
| 51 |
+
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
| 52 |
|
| 53 |
fig = px.scatter(
|
| 54 |
df,
|
| 55 |
+
x="total_gpu_energy", # x-axis: GPU energy consumption
|
| 56 |
+
y="Display Model", # y-axis: Model name for display
|
| 57 |
+
color="energy_score", # Discrete color based on energy score
|
| 58 |
custom_data=['energy_score'],
|
| 59 |
height=500,
|
| 60 |
width=800,
|
|
|
|
| 76 |
df = pd.read_csv('data/energy/' + task)
|
| 77 |
if df.columns[0].startswith("Unnamed:"):
|
| 78 |
df = df.iloc[:, 1:]
|
| 79 |
+
# Convert energy_score to categorical string
|
| 80 |
+
df['energy_score'] = df['energy_score'].astype(int).astype(str)
|
| 81 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 82 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 83 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 84 |
|
| 85 |
+
color_map = {"1": "red", "2": "orange", "3": "yellow", "4": "lightgreen", "5": "green"}
|
| 86 |
|
| 87 |
fig = px.scatter(
|
| 88 |
all_df,
|
| 89 |
+
x="total_gpu_energy", # x-axis: GPU energy consumption
|
| 90 |
y="Display Model",
|
| 91 |
+
color="energy_score", # Discrete color mapping
|
| 92 |
custom_data=['energy_score'],
|
| 93 |
height=500,
|
| 94 |
width=800,
|
|
|
|
| 248 |
with gr.TabItem("All Tasks 💡"):
|
| 249 |
with gr.Row():
|
| 250 |
with gr.Column():
|
| 251 |
+
# Call the functions to generate the plot and table
|
| 252 |
+
plot = gr.Plot(get_all_plots())
|
| 253 |
with gr.Column():
|
| 254 |
+
table = gr.Dataframe(get_all_model_names(), datatype="markdown")
|
| 255 |
|
| 256 |
with gr.Accordion("📙 Citation", open=False):
|
| 257 |
citation_button = gr.Textbox(
|
|
|
|
| 265 |
"""Last updated: February 2025"""
|
| 266 |
)
|
| 267 |
|
| 268 |
+
demo.launch()
|