Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,7 +11,7 @@ CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
|
|
| 11 |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
| 12 |
}"""
|
| 13 |
|
| 14 |
-
# List of
|
| 15 |
tasks = [
|
| 16 |
'asr.csv',
|
| 17 |
'object_detection.csv',
|
|
@@ -30,49 +30,68 @@ def format_stars(score):
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
def make_link(mname):
|
|
|
|
| 36 |
parts = str(mname).split('/')
|
| 37 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 38 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 39 |
|
| 40 |
def get_plots(task):
|
|
|
|
| 41 |
df = pd.read_csv('data/energy/' + task)
|
|
|
|
| 42 |
if df.columns[0].startswith("Unnamed:"):
|
| 43 |
df = df.iloc[:, 1:]
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 46 |
|
|
|
|
| 47 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
fig = px.scatter(
|
| 50 |
df,
|
| 51 |
-
x="total_gpu_energy",
|
| 52 |
-
y="Display Model",
|
| 53 |
-
color="energy_score",
|
| 54 |
-
custom_data=['energy_score'],
|
| 55 |
height=500,
|
| 56 |
width=800,
|
| 57 |
-
color_discrete_map=color_map
|
| 58 |
)
|
| 59 |
fig.update_traces(
|
| 60 |
-
hovertemplate=
|
| 61 |
-
"Model: %{
|
| 62 |
-
"GPU Energy (Wh): %{
|
| 63 |
-
"Energy Score: %{customdata[
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
-
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
| 67 |
return fig
|
| 68 |
|
| 69 |
def get_all_plots():
|
|
|
|
| 70 |
all_df = pd.DataFrame()
|
| 71 |
for task in tasks:
|
| 72 |
df = pd.read_csv('data/energy/' + task)
|
| 73 |
if df.columns[0].startswith("Unnamed:"):
|
| 74 |
df = df.iloc[:, 1:]
|
| 75 |
-
df['
|
|
|
|
| 76 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 77 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 78 |
all_df = all_df.drop_duplicates(subset=['model'])
|
|
@@ -81,38 +100,41 @@ def get_all_plots():
|
|
| 81 |
|
| 82 |
fig = px.scatter(
|
| 83 |
all_df,
|
| 84 |
-
x="total_gpu_energy",
|
| 85 |
y="Display Model",
|
| 86 |
-
color="energy_score",
|
| 87 |
-
custom_data=['energy_score'],
|
| 88 |
height=500,
|
| 89 |
width=800,
|
| 90 |
-
color_discrete_map=color_map
|
| 91 |
)
|
| 92 |
fig.update_traces(
|
| 93 |
-
hovertemplate=
|
| 94 |
-
"Model: %{
|
| 95 |
-
"GPU Energy (Wh): %{
|
| 96 |
-
"Energy Score: %{customdata[
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
-
fig.update_layout(xaxis_title="GPU Energy (Wh)", yaxis_title="Model")
|
| 100 |
return fig
|
| 101 |
|
| 102 |
def get_model_names(task):
|
| 103 |
"""
|
| 104 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 105 |
- Model (a markdown link)
|
| 106 |
-
- GPU Energy (Wh) formatted
|
| 107 |
- Score (a star rating based on energy_score)
|
| 108 |
-
For text_generation.csv only, also
|
| 109 |
-
The final column order is: Model, GPU Energy (Wh), Score, [Class].
|
| 110 |
"""
|
| 111 |
df = pd.read_csv('data/energy/' + task)
|
| 112 |
if df.columns[0].startswith("Unnamed:"):
|
| 113 |
df = df.iloc[:, 1:]
|
| 114 |
-
df['
|
| 115 |
-
|
| 116 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 117 |
df['Model'] = df['model'].apply(make_link)
|
| 118 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
@@ -123,13 +145,14 @@ def get_model_names(task):
|
|
| 123 |
else:
|
| 124 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 125 |
|
| 126 |
-
|
|
|
|
| 127 |
return df
|
| 128 |
|
| 129 |
def get_all_model_names():
|
| 130 |
"""
|
| 131 |
Combine data from all tasks and return a leaderboard table with:
|
| 132 |
-
- Model, GPU Energy (Wh), Score
|
| 133 |
Duplicate models are dropped.
|
| 134 |
"""
|
| 135 |
all_df = pd.DataFrame()
|
|
@@ -137,17 +160,18 @@ def get_all_model_names():
|
|
| 137 |
df = pd.read_csv('data/energy/' + task)
|
| 138 |
if df.columns[0].startswith("Unnamed:"):
|
| 139 |
df = df.iloc[:, 1:]
|
| 140 |
-
df['
|
|
|
|
| 141 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 142 |
df['Model'] = df['model'].apply(make_link)
|
| 143 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 144 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 145 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 146 |
-
all_df = all_df.sort_values(by='
|
| 147 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 148 |
|
| 149 |
# Build the Gradio interface.
|
| 150 |
-
# The
|
| 151 |
demo = gr.Blocks(css="""
|
| 152 |
.gr-dataframe table {
|
| 153 |
table-layout: fixed;
|
|
@@ -257,8 +281,6 @@ Click through the tasks below to see how different models measure up in terms of
|
|
| 257 |
lines=10,
|
| 258 |
show_copy_button=True,
|
| 259 |
)
|
| 260 |
-
gr.Markdown(
|
| 261 |
-
"""Last updated: February 2025"""
|
| 262 |
-
)
|
| 263 |
|
| 264 |
demo.launch()
|
|
|
|
| 11 |
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
|
| 12 |
}"""
|
| 13 |
|
| 14 |
+
# List of CSV filenames (one per task)
|
| 15 |
tasks = [
|
| 16 |
'asr.csv',
|
| 17 |
'object_detection.csv',
|
|
|
|
| 30 |
score_int = int(score)
|
| 31 |
except Exception:
|
| 32 |
score_int = 0
|
| 33 |
+
# Display a star rating (★) based on the energy score.
|
| 34 |
+
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
|
| 35 |
|
| 36 |
def make_link(mname):
|
| 37 |
+
# Make a Markdown link from the model name.
|
| 38 |
parts = str(mname).split('/')
|
| 39 |
display_name = parts[1] if len(parts) > 1 else mname
|
| 40 |
return f'[{display_name}](https://huggingface.co/{mname})'
|
| 41 |
|
| 42 |
def get_plots(task):
|
| 43 |
+
# Read the CSV for the given task.
|
| 44 |
df = pd.read_csv('data/energy/' + task)
|
| 45 |
+
# If the first column is unnamed (the extra blank column), drop it.
|
| 46 |
if df.columns[0].startswith("Unnamed:"):
|
| 47 |
df = df.iloc[:, 1:]
|
| 48 |
+
# Convert the numeric columns
|
| 49 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 50 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 51 |
+
# Create a short version of the model name for display on the y-axis.
|
| 52 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 53 |
|
| 54 |
+
# Define a discrete color mapping for energy scores.
|
| 55 |
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
|
| 56 |
|
| 57 |
+
# Build a scatter plot:
|
| 58 |
+
# - x-axis: total_gpu_energy
|
| 59 |
+
# - y-axis: Display Model (short model name)
|
| 60 |
+
# - Color: energy_score
|
| 61 |
+
# - Custom tooltip will include the full model name, energy value and energy score.
|
| 62 |
fig = px.scatter(
|
| 63 |
df,
|
| 64 |
+
x="total_gpu_energy",
|
| 65 |
+
y="Display Model",
|
| 66 |
+
color="energy_score",
|
| 67 |
+
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
| 68 |
height=500,
|
| 69 |
width=800,
|
| 70 |
+
color_discrete_map=color_map,
|
| 71 |
)
|
| 72 |
fig.update_traces(
|
| 73 |
+
hovertemplate=(
|
| 74 |
+
"Model: %{customdata[0]}<br>" +
|
| 75 |
+
"Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
|
| 76 |
+
"Energy Score: %{customdata[2]}"
|
| 77 |
+
)
|
| 78 |
+
)
|
| 79 |
+
fig.update_layout(
|
| 80 |
+
xaxis_title="Total GPU Energy (Wh)",
|
| 81 |
+
yaxis_title="Model",
|
| 82 |
+
margin=dict(l=40, r=40, t=40, b=40)
|
| 83 |
)
|
|
|
|
| 84 |
return fig
|
| 85 |
|
| 86 |
def get_all_plots():
|
| 87 |
+
# Combine data from all tasks.
|
| 88 |
all_df = pd.DataFrame()
|
| 89 |
for task in tasks:
|
| 90 |
df = pd.read_csv('data/energy/' + task)
|
| 91 |
if df.columns[0].startswith("Unnamed:"):
|
| 92 |
df = df.iloc[:, 1:]
|
| 93 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 94 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 95 |
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
|
| 96 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 97 |
all_df = all_df.drop_duplicates(subset=['model'])
|
|
|
|
| 100 |
|
| 101 |
fig = px.scatter(
|
| 102 |
all_df,
|
| 103 |
+
x="total_gpu_energy",
|
| 104 |
y="Display Model",
|
| 105 |
+
color="energy_score",
|
| 106 |
+
custom_data=['model', 'total_gpu_energy', 'energy_score'],
|
| 107 |
height=500,
|
| 108 |
width=800,
|
| 109 |
+
color_discrete_map=color_map,
|
| 110 |
)
|
| 111 |
fig.update_traces(
|
| 112 |
+
hovertemplate=(
|
| 113 |
+
"Model: %{customdata[0]}<br>" +
|
| 114 |
+
"Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
|
| 115 |
+
"Energy Score: %{customdata[2]}"
|
| 116 |
+
)
|
| 117 |
+
)
|
| 118 |
+
fig.update_layout(
|
| 119 |
+
xaxis_title="Total GPU Energy (Wh)",
|
| 120 |
+
yaxis_title="Model",
|
| 121 |
+
margin=dict(l=40, r=40, t=40, b=40)
|
| 122 |
)
|
|
|
|
| 123 |
return fig
|
| 124 |
|
| 125 |
def get_model_names(task):
|
| 126 |
"""
|
| 127 |
For a given task, load the energy CSV and return a dataframe with the following columns:
|
| 128 |
- Model (a markdown link)
|
| 129 |
+
- GPU Energy (Wh) (formatted to 4 decimal places)
|
| 130 |
- Score (a star rating based on energy_score)
|
| 131 |
+
For text_generation.csv only, also include the "Class" column if it exists.
|
|
|
|
| 132 |
"""
|
| 133 |
df = pd.read_csv('data/energy/' + task)
|
| 134 |
if df.columns[0].startswith("Unnamed:"):
|
| 135 |
df = df.iloc[:, 1:]
|
| 136 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 137 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 138 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 139 |
df['Model'] = df['model'].apply(make_link)
|
| 140 |
df['Score'] = df['energy_score'].apply(format_stars)
|
|
|
|
| 145 |
else:
|
| 146 |
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 147 |
|
| 148 |
+
# Sort by the numeric energy value.
|
| 149 |
+
df = df.sort_values(by='total_gpu_energy')
|
| 150 |
return df
|
| 151 |
|
| 152 |
def get_all_model_names():
|
| 153 |
"""
|
| 154 |
Combine data from all tasks and return a leaderboard table with:
|
| 155 |
+
- Model, GPU Energy (Wh), Score.
|
| 156 |
Duplicate models are dropped.
|
| 157 |
"""
|
| 158 |
all_df = pd.DataFrame()
|
|
|
|
| 160 |
df = pd.read_csv('data/energy/' + task)
|
| 161 |
if df.columns[0].startswith("Unnamed:"):
|
| 162 |
df = df.iloc[:, 1:]
|
| 163 |
+
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
|
| 164 |
+
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
|
| 165 |
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
|
| 166 |
df['Model'] = df['model'].apply(make_link)
|
| 167 |
df['Score'] = df['energy_score'].apply(format_stars)
|
| 168 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 169 |
all_df = all_df.drop_duplicates(subset=['model'])
|
| 170 |
+
all_df = all_df.sort_values(by='total_gpu_energy')
|
| 171 |
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
|
| 172 |
|
| 173 |
# Build the Gradio interface.
|
| 174 |
+
# The CSS below sets fixed layouts for tables.
|
| 175 |
demo = gr.Blocks(css="""
|
| 176 |
.gr-dataframe table {
|
| 177 |
table-layout: fixed;
|
|
|
|
| 281 |
lines=10,
|
| 282 |
show_copy_button=True,
|
| 283 |
)
|
| 284 |
+
gr.Markdown("Last updated: February 2025")
|
|
|
|
|
|
|
| 285 |
|
| 286 |
demo.launch()
|