# Read the data import pandas as pd df = pd.read_csv("./Automobile_data.csv") df = df.drop(columns = ['normalized-losses','symboling'], axis = 1) context_data = [] for i in range(len(df)): # Loop over rows context = "" for j in range(10): # Loop over the first 8 columns context += df.columns[j] # Add column name context += ": " context += str(df.iloc[i][j]) # Convert value to string context += " " context_data.append(context) from langchain_groq import ChatGroq llm = ChatGroq(model ="llama-3.1-70b-versatile",api_key = "beza") qa_pair = [] for i in range(len(df)): Question = "Given the type of "+df['make'][i]+ " "+ df['body-style'][i][:-1]+", "" what is the price?" Answer = df['price'][i] input = f"Instruction:\n{Question}\n\nResponse:\n{Answer}" qa_pair.append(input) # from langchain_groq import ChatGroq # llm = ChatGroq(model="llama-3.1-70b-versatile",api_key= "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") ## Embedding model! from langchain_huggingface import HuggingFaceEmbeddings embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # create vector store! from langchain_chroma import Chroma vectorstore = Chroma( collection_name="car_dataset_store", embedding_function=embed_model, persist_directory="./", ) vectorstore.get().keys() # add data to vector nstore vectorstore.add_texts(context_data) query = "What is make, number of doors and fuel type?" docs = vectorstore.similarity_search(query) print(docs[0].page_content) retriever = vectorstore.as_retriever() from langchain_core.prompts import PromptTemplate template = ("""You are a car expert. Use the provided context to answer the question. If you don't know the answer, say so. Explain your answer in detail. Do not discuss the context in your response; just provide the answer directly. Context: {context} Question: {question} Answer:""") rag_prompt = PromptTemplate.from_template(template) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) from IPython.display import display, Markdown response = rag_chain.invoke("What is Capital of Rwanda?") Markdown(response) import gradio as gr def rag_memory_stream(text): partial_text = "" for new_text in rag_chain.stream(text): partial_text += new_text yield partial_text title = "Real-time AI App with Groq API and LangChain to Answer car questions" demo = gr.Interface( title=title, fn=rag_memory_stream, inputs="text", outputs="text", allow_flagging="never", ) demo.launch(share=True) if __name__ == "__main__": demo.launch()