File size: 3,570 Bytes
07037b8 51782e8 086f34e 90c6fe9 07037b8 feba6f5 90c6fe9 feba6f5 07037b8 4d09653 619c894 4d09653 07037b8 4d09653 07037b8 5be2eda 07037b8 5be2eda 07037b8 ed4e4a3 015e894 07037b8 ed4e4a3 6b1d463 e35c0de 6b1d463 e35c0de 6b1d463 e35c0de c7a20f3 e35c0de 4a18196 1a3195c 20d2574 e99d706 1a3195c 5b88659 e99d706 5b88659 e99d706 07037b8 e35c0de 20d2574 4a18196 20d2574 e35c0de 20d2574 e35c0de 20d2574 e35c0de 015e894 1a3195c 015e894 ed4e4a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
# Read the data
import pandas as pd
df = pd.read_csv('./Automobile_data.csv')
#df = df.drop(columns = ['normalized-losses','symboling'], axis = 1)
context_data = []
for i in range(len(df)): # Loop over rows
context = ""
for j in range(26): # Loop over the first 8 columns
context += df.columns[j] # Add column name
context += ": "
context += str(df.iloc[i][j]) # Convert value to string
context += " "
context_data.append(context)
import os
# Get the secret key from the environment
groq_key = os.environ.get('groq_API_Keys')
## LLM used for RAG
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# create vector store!
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="car_dataset_store",
embedding_function=embed_model,
persist_directory="./",
)
# add data to vector nstore
vectorstore.add_texts(context_data)
retriever = vectorstore.as_retriever()
from langchain_core.prompts import PromptTemplate
template = ("""You are a car expert.
Use the provided context to answer the question.
If you don't know the answer, say so. Explain your answer in detail.
Do not discuss the context in your response; just provide the answer directly.
Context: {context}
Question: {question}
Answer:""")
rag_prompt = PromptTemplate.from_template(template)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
import gradio as gr
# Mock for rag_chain.stream or similar streaming function
class MockRAGChain:
@staticmethod
def stream(message):
response = f"Processing your message: {message}"
yield response # Mock single response for testing
rag_chain = MockRAGChain() # Replace with your actual RAG chain object
# Function for chatbot responses (simplified for testing)
def rag_memory_stream(message, history):
for response in rag_chain.stream(message): # Streaming response
return response # Mock response for now
# Examples and app information
examples = ['I need a car', 'What is the make and fuel type of a car?']
description = "An advanced chatbot that helps you choose the right car based on your preferences and budget."
title = "Car Expert :) Let Me Help You Find the Perfect Ride!"
# Custom theme with sky-blue background and black text
custom_theme = gr.themes.Base(primary_hue="blue", secondary_hue="green").set(
body_background_fill="#87CEEB", # Sky blue background
body_text_color="#000000", # Black text
)
# Interface with Car Preferences and Chat
with gr.Blocks(theme=custom_theme) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Tabs():
# Chat Tab
with gr.Tab("Chat"):
chat_interface = gr.ChatInterface(
fn=rag_memory_stream, # Simplified chat function
type="value", # Use "value" to simplify interactions
examples=examples,
)
# Additional Tabs (optional)
with gr.Tab("Car Preferences"):
gr.Markdown("This tab handles car preferences (not modified here).")
# Launch the app
if __name__ == "__main__":
demo.launch() |