File size: 3,570 Bytes
07037b8
51782e8
086f34e
90c6fe9
07037b8
 
feba6f5
 
90c6fe9
feba6f5
 
 
 
 
07037b8
 
4d09653
 
 
619c894
4d09653
 
 
07037b8
4d09653
07037b8
 
 
 
 
 
 
 
 
5be2eda
07037b8
 
 
 
 
 
 
 
 
 
 
5be2eda
07037b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed4e4a3
015e894
07037b8
ed4e4a3
6b1d463
 
 
e35c0de
 
6b1d463
e35c0de
6b1d463
e35c0de
c7a20f3
e35c0de
 
4a18196
1a3195c
20d2574
 
e99d706
1a3195c
5b88659
e99d706
5b88659
 
e99d706
07037b8
e35c0de
20d2574
 
 
 
 
4a18196
20d2574
 
e35c0de
 
20d2574
 
 
e35c0de
20d2574
e35c0de
015e894
1a3195c
015e894
ed4e4a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Read the data
import pandas as pd
df = pd.read_csv('./Automobile_data.csv')
#df = df.drop(columns = ['normalized-losses','symboling'], axis = 1)

context_data = []
for i in range(len(df)):  # Loop over rows
    context = ""
    for j in range(26):  # Loop over the first 8 columns
        context += df.columns[j]  # Add column name
        context += ": "
        context += str(df.iloc[i][j])  # Convert value to string
        context += " "
    context_data.append(context)


import os

# Get the secret key from the environment
groq_key = os.environ.get('groq_API_Keys')

## LLM used for RAG
from langchain_groq import ChatGroq

llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)

## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

# create vector store!
from langchain_chroma import Chroma

vectorstore = Chroma(
    collection_name="car_dataset_store",
    embedding_function=embed_model,
    persist_directory="./",
)

# add data to vector nstore
vectorstore.add_texts(context_data)

retriever = vectorstore.as_retriever()

from langchain_core.prompts import PromptTemplate

template = ("""You are a car expert.
    Use the provided context to answer the question.
    If you don't know the answer, say so. Explain your answer in detail.
    Do not discuss the context in your response; just provide the answer directly.

    Context: {context}

    Question: {question}

    Answer:""")

rag_prompt = PromptTemplate.from_template(template)

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | rag_prompt
    | llm
    | StrOutputParser()
)


import gradio as gr

# Mock for rag_chain.stream or similar streaming function
class MockRAGChain:
    @staticmethod
    def stream(message):
        response = f"Processing your message: {message}"
        yield response  # Mock single response for testing

rag_chain = MockRAGChain()  # Replace with your actual RAG chain object

# Function for chatbot responses (simplified for testing)
def rag_memory_stream(message, history):
    for response in rag_chain.stream(message):  # Streaming response
        return response  # Mock response for now

# Examples and app information
examples = ['I need a car', 'What is the make and fuel type of a car?']
description = "An advanced chatbot that helps you choose the right car based on your preferences and budget."
title = "Car Expert :) Let Me Help You Find the Perfect Ride!"

# Custom theme with sky-blue background and black text
custom_theme = gr.themes.Base(primary_hue="blue", secondary_hue="green").set(
    body_background_fill="#87CEEB",  # Sky blue background
    body_text_color="#000000",      # Black text
)

# Interface with Car Preferences and Chat
with gr.Blocks(theme=custom_theme) as demo:
    gr.Markdown(f"# {title}")
    gr.Markdown(description)

    with gr.Tabs():
        # Chat Tab
        with gr.Tab("Chat"):
            chat_interface = gr.ChatInterface(
                fn=rag_memory_stream,  # Simplified chat function
                type="value",          # Use "value" to simplify interactions
                examples=examples,
            )

        # Additional Tabs (optional)
        with gr.Tab("Car Preferences"):
            gr.Markdown("This tab handles car preferences (not modified here).")

# Launch the app
if __name__ == "__main__":
    demo.launch()