File size: 2,858 Bytes
07037b8 51782e8 5a9c746 07037b8 015e894 07037b8 015e894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# Read the data
import pandas as pd
df = pd.read_csv("./Automobile_data.csv")
df = df.drop(columns = ['normalized-losses','symboling'], axis = 1)
context_data = []
for i in range(len(df)): # Loop over rows
context = ""
for j in range(10): # Loop over the first 8 columns
context += df.columns[j] # Add column name
context += ": "
context += str(df.iloc[i][j]) # Convert value to string
context += " "
context_data.append(context)
from langchain_groq import ChatGroq
llm = ChatGroq(model ="llama-3.1-70b-versatile",api_key = "beza")
qa_pair = []
for i in range(len(df)):
Question = "Given the type of "+df['make'][i]+ " "+ df['body-style'][i][:-1]+", "" what is the price?"
Answer = df['price'][i]
input = f"Instruction:\n{Question}\n\nResponse:\n{Answer}"
qa_pair.append(input)
# from langchain_groq import ChatGroq
# llm = ChatGroq(model="llama-3.1-70b-versatile",api_key= "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")
## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# create vector store!
from langchain_chroma import Chroma
vectorstore = Chroma(
collection_name="car_dataset_store",
embedding_function=embed_model,
persist_directory="./",
)
vectorstore.get().keys()
# add data to vector nstore
vectorstore.add_texts(context_data)
query = "What is make, number of doors and fuel type?"
docs = vectorstore.similarity_search(query)
print(docs[0].page_content)
retriever = vectorstore.as_retriever()
from langchain_core.prompts import PromptTemplate
template = ("""You are a car expert.
Use the provided context to answer the question.
If you don't know the answer, say so. Explain your answer in detail.
Do not discuss the context in your response; just provide the answer directly.
Context: {context}
Question: {question}
Answer:""")
rag_prompt = PromptTemplate.from_template(template)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
from IPython.display import display, Markdown
response = rag_chain.invoke("What is Capital of Rwanda?")
Markdown(response)
import gradio as gr
def rag_memory_stream(text):
partial_text = ""
for new_text in rag_chain.stream(text):
partial_text += new_text
yield partial_text
title = "Real-time AI App with Groq API and LangChain to Answer car questions"
demo = gr.Interface(
title=title,
fn=rag_memory_stream,
inputs="text",
outputs="text",
allow_flagging="never",
)
demo.launch(share=True)
if __name__ == "__main__":
demo.launch()
|